Back to first pageBack to first page Centre for Artificial Intelligence of UNL
Browse our site
You are here:

Publication details

Publication details
Main information
Tight Semantics for Logic Programs
July 2010
TSLP
We define the Tight Semantics TS, for all NLPs complying with the requirements: 2-valued; preserve SM models; guarantee of model existence in face of Odd Loops Over Negation (OLONs) or infinite chains; relevance; cumulativity; compliance with WFM. When complete models are unnecessary and top-down querying is desired, TS provides a 2-valued option guaranteeing model existence, abduction by need rendered available too. The user does not pay for computing whole models nor for generating all possible abductions, only to filter irrelevant ones later. A TS model of a NLP P is any minimal model M of P that further satisfies P^-the remainder of P-in that each loop in P^ has a MM contained in M whilst respecting the constraints imposed by the MMs of the other loops so-constrained too. Applications of TS are all those of Stable Models plus those permitting to solve OLONs for model existence, and those employing OLONs for productively obtaining solutions, not just filtering them (like ICs).
In proceedings
Luís Moniz Pereira, Alexandre Miguel Pinto
M. Hermenegildo, Torsten Schaub
Procs. Technical Communications of 26th Intl. Conf. Logic Programming (ICLP'10)
Leibniz International Proceedings in Informatics (LIPIcs)
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany
http://drops.dagstuhl.de/portals/extern/index.php?semnr=10003
7
134-143
978-3-939897-17-0
1868-8969
Extended version: http://centria.di.fct.unl.pt/~lmp/publications/online-papers/TMS.pdf
http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=2591
Export formats
Luís Moniz Pereira and Alexandre Miguel Pinto, Tight Semantics for Logic Programs, in: M. Hermenegildo and Torsten Schaub (eds), Procs. Technical Communications of 26th Intl. Conf. Logic Programming (ICLP'10), Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, http://drops.dagstuhl.de/portals/extern/index.php?semnr=10003, Vol. 7, ISBN 978-3-939897-17-0, ISSN 1868-8969, Pag. 134-143, (http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=2591), Extended version: http://centria.di.fct.unl.pt/~lmp/publications/online-papers/TMS.pdf, July 2010.
<a href="/people/members/view.php?code=6175f826202ff877fba2ad77784cb9cb" class="author">Luís Moniz Pereira</a> and <a href="/people/members/view.php?code=76dee43781430d064f62dee3fbdf47a8" class="author">Alexandre Miguel Pinto</a>, <b>Tight Semantics for Logic Programs</b>, in: M. Hermenegildo and Torsten Schaub (eds), <u>Procs. Technical Communications of 26th Intl. Conf. Logic Programming (ICLP'10)</u>, Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, http://drops.dagstuhl.de/portals/extern/index.php?semnr=10003, Vol. 7, ISBN 978-3-939897-17-0, ISSN 1868-8969, Pag. 134-143, (<a href="http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=2591" target="_blank">url</a>), <i>Extended version: http://centria.di.fct.unl.pt/~lmp/publications/online-papers/TMS.pdf</i>, July 2010.
@inproceedings {TSLP, author = {Lu\'{\i}s Moniz Pereira and Alexandre Miguel Pinto}, editor = {M. Hermenegildo and Torsten Schaub}, title = {Tight Semantics for Logic Programs}, booktitle = {Procs. Technical Communications of 26th Intl. Conf. Logic Programming (ICLP'10)}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany}, address = {http://drops.dagstuhl.de/portals/extern/index.php?semnr=10003}, volume = {7}, pages = {134-143}, isbn = {978-3-939897-17-0}, issn = {1868-8969}, note = {Extended version: http://centria.di.fct.unl.pt/~lmp/publications/online-papers/TMS.pdf}, url = {http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=2591}, abstract = {We define the Tight Semantics TS, for all NLPs complying with the requirements: 2-valued; preserve SM models; guarantee of model existence in face of Odd Loops Over Negation (OLONs) or infinite chains; relevance; cumulativity; compliance with WFM. When complete models are unnecessary and top-down querying is desired, TS provides a 2-valued option guaranteeing model existence, abduction by need rendered available too. The user does not pay for computing whole models nor for generating all possible abductions, only to filter irrelevant ones later. A TS model of a NLP P is any minimal model M of P that further satisfies P^-the remainder of P-in that each loop in P^ has a MM contained in M whilst respecting the constraints imposed by the MMs of the other loops so-constrained too. Applications of TS are all those of Stable Models plus those permitting to solve OLONs for model existence, and those employing OLONs for productively obtaining solutions, not just filtering them (like ICs).}, keywords = {Normal Logic Programs, Relevance, Cumulativity, Stable Models, Well-Founded Semantics, Program Remainder}, month = {July}, year = {2010}, }
Publication's urls
/publications/view.php?code=8d3c033428ca1552cc79306109840c12
/publications/view.php?code=TSLP

Centre for Artificial Intelligence of UNL
Departamento de Informática, FCT/UNL
Quinta da Torre 2829-516 CAPARICA - Portugal
Tel. (+351) 21 294 8536 FAX (+351) 21 294 8541

Fundacao_FCT