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ABSTRACT:  Reliability quantifies the ability of a system to perform its required function under vari-
able conditions. The adequate functioning of a system is often represented by inequality constraints, and 
its reliability is the probability that such constraints are satisfied, given the uncertainty the variables are 
subject to. Since this computation is very hard, namely when the systems are modeled with nonlinear 
constraints, traditional methods adopt a number of approximations, thus computing a value that may be 
far from the exact one. Moreover, these methods do not provide any guarantees regarding the correctness 
of the computed results. In this paper, we use the probabilistic continuous constraints framework to effi-
ciently compute safe bounds for the reliability of a system, and illustrate it on a number of representative 
examples.

The paper is organized as follows. Section  2 
briefly introduces the concepts of reliability assess-
ment and describes classical techniques, such as 
FORM (Hohenbichler & Rackwitz 1983), SORM 
(Fiessler, Neumann, & Rackwitz 1979), and Monte 
Carlo simulation (Halder & Mahadevan 1999), used 
to address such problem, discussing their limita-
tions. In sections 3 and 4 we introduce our Probabi-
listic Continuous Constraint approach, discussing 
the features that are required toaddress reliability 
assessment. Section  5 illustrates our framework 
on a set of representative examples, comparing it 
with traditional methods, highlighting the impor-
tance of the safe bounds we efficiently obtain. The 
last sectionsummarizes the main conclusions and 
directions for future work.

2  Reliability Assessment

A limit-state is a condition beyond which a sys-
tem no longer fulfills the desired functionality. 
Reliability assessment calculates and predicts the 
probability of limit-state violations at any stage of 
a system’s life.

The probability of occurrence of a limit-state 
violation in a system represents its probability 
of failure, Pf , whereas P Ps f= −1  represents its 
reliability.

Failure events are represented as limit-state 
constraints g  is a limit-state function and x is a 
realization of  the random vector X (defined in 
ΩX ) that represents all the relevant uncertainties 
influencing the probability of  failure and has joint 
Probability Density Function (PDF) fX . Thus, 

1  Introduction

Reliability analysis studies the ability of a system 
to perform its required function under variable 
conditions. In this context, reliability assessment 
quantifies the chance of system failure at any stage 
of a system’s life. This research area has a wide 
range of applications, including the aeronautical 
(Nikolaidis, Ghiocel, & Singhal 2007), chemical 
(Goel, Grievink, Herder, & Weijnen 2002) and 
building (Huang, Chan, & Lou 2012) industries.

Reliability is reported in terms of the probabil-
ity of adequate functioning of a system and its 
exact quantification requires the calculation of a 
multi-dimensional integral with a nonlinear inte-
gration boundary. Because there is rarely a close-
form solution, this calculation is one of the major 
concerns of classical approaches to solve reliability 
problems, which adopt approximation methods 
that rely on several simplifications of the original 
problem to compute a reliability estimate, often 
leading to inaccurate results, especially in highly 
nonlinear problems.

When choosing among several alternative con-
figurations of a system it is important to obtain 
safe bounds for their reliability, since designs with 
a high reliability estimate but high uncertainty on 
such estimation are not credible options. Such safe 
bounds are not available with classical approaches, 
but they can be provided by the Probabilistic Con-
tinuous Constraint framework that we have been 
developing to integrate probabilities and con-
straint programming, and that has already been 
successfully applied to inverse problems (Carvalho, 
Cruz, & Barahona 2013).



2270

the failure event is F x g x= ∈ : <{ ( ) }ΩX 0  and the 
probability of  failure is the probability of  the fail-
ure event:

P P x F f x dxf g x
= ∈ =

<∫( ) ( )
( ) 0 X 	 (1)

More generally, we are interested in problems 
that can be defined by one or more limit-state 
functions. In series systems, global failure occurs 
when at least one limit-state functions is violated, 
whereas in parallel systems, it occurs when all lim-
it-state functions are violated. So, the failure events 
for series and parallel systems with k limit-state 
functions, are, respectively:

F x g x
i

k

i= ∈ : <
=1

0∪{ ( ) }ΩX and 	 (2)

F x g x
i

k

i= ∈ : <
=1

0∩{ ( ) }ΩX 	 (3)

2.1  Classical techniques

Reliability assessment involves the calculation of 
a multi dimensional integral in a possibly highly 
nonlinear integration boundary (Equation  (1)). 
Analytical computation of such integral is usu-
ally impossible, so various simulation-based and 
numerical methods have been proposed to deal 
with this problem.

In (Hasofer & Lind 1974), Hasofer and Lind 
introduced the reliability index technique for 
calculating approximations of the desired inte-
gral with reduced computation costs. The reli-
ability index has been extensively used in the first 
and second order reliability methods (FORM 
(Hohenbichler  &  Rackwitz 1983) and SORM 
(Fiessler, Neumann, & Rackwitz 1979)).

The main idea is to move the reliability problem 
from the space of random vector X  to the space of 
standard normal statistically independent random 
variables U = , …,U Un1  using a suitable transfor-
mation U = T X( ) , such as Rosemblatt (Rosenblatt 
1952) or Nataf (Nataf 1962) transformations (see 
(Hohenbichler & Rackwitz 1981, Melchers 1999) 
for an overview). In the U space, Equation (1) can 
be expressed as:

P f d u duf g
i

n

g u U i ii
= =

<
=

<∫ ∏ ∫( ) ( )
( ) ( )

u U u u
0

1
0
φ

where φ Ui
 is the standard normal PDF of Ui .

In FORM an approximation to the probability 
of failure is obtained by making the failure surface, 
g( )U = 0, linear at the design point, u∗ , often called 

the Most Probable Point of failure (MPP). This is 
the point on the failure surface closest to the origin 
and with the highest probability (local maximum) 
in the failure domain of the standard normal space. 
The distance from the origin to the design point is 
the reliability index β = ∗u .

Since the standard normal space is rotational 
symmetric, probability of failure can be directly 
obtained using the reliability index, Pf = −Φ( )β , 
where Φ  is the standard normal cumulative prob-
ability function.

As the limit state function is in general nonlin-
ear it is not possible to know the design point in 
advance and this has to be found iteratively. The 
design point is thus, the solution to the constrained 
optimization problem:

β =
∈ =

min
{ ( ) }u g u

u
0

This problem, being the most expensive part 
of FORM algorithm, may be solved in a number 
of different ways (see (Eldred, Bichon, & Adams 
2006) for an overview). An appropriate iteration 
scheme converges after some iterations, providing 
the design point u∗  as well as the reliability index 
β , which may be related directly to the probability 
of failure. However, with non convex optimization 
problems, it is not guaranteed that the solution 
point will be the global minimum-distance point.

FORM usually works well when the failure 
surface has only one minimal distance point and 
the function is nearly linear in the MPP neighbor-
hood. However, for increasingly nonlinear failure 
surface the probability of failure estimated by 
FORM becomes increasingly inaccurate (and pos-
sibly unreasonable) (Melchers 1999). To address 
such non linearity SORM incorporates some cur-
vature in the limit state approximation through 
a parabolic approximation to the failure surface 
(Breitung 1984).

In both methods, it is assumed a single limit-
state function with a single design point where only 
the region around such point contributes to the 
probability of failure. In limit-state functions with 
multiple design points (and in problems with mul-
tiple limit-state functions), application of FORM 
or SORM around a single design point results in 
erroneous estimates for the probability of failure. 
So, the problem of identifying the multiple design 
points was addressed by several authors (e.g. 
(Kiureghian & Dakessian 1998, Barranco-Cicilia, 
de Lima, & Sudati-Sagrilo 2009)).

In series systems, generally there exists one 
design point for each limit-state function (which 
contributes to the identification of the feasible 
region). In contrast, in parallel systems there usu-
ally exists one design point for each pairwise inter-
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section of limit-state functions (again contributing 
to the identification of the unfeasible region).

Once all design points are identified, FORM or 
SORM approximations are constructed at these 
points and the failure probability is computed 
by series system reliability analysis (for multiple 
design points in a single limit-state function or 
series systems) or by parallel system reliability 
analysis (for parallel systems) (see (Sørensen 2004, 
Notes 6 and 7) for details).

Other techniques include sampling, based 
on Monte Carlo simulation (MCS) (Halder & 
Mahadevan 1999) and work well for small reliabil-
ity requirements. Nevertheless, as the desired reli-
ability increases, the number of samples must also 
increase to find at least one infeasible solution.

Since Monte Carlo method is basically a sam-
pling process, the results are subjected to sampling 
error that decreases with the sample size. However, 
using procedures known as variance reduction 
techniques the error may be reduced without sig-
nificantly increasing the sample size. One of such 
procedures with a high convergence rate is the 
Monte Carlo with Importance Sampling (MCIS) 
(Melchers 1999). In MCIS, the regions of interest 
for the simulation process are those around the 
points in the failure domain having the largest val-
ues, i.e., the design points.

Given the simplifications adopted and their 
approximate nature, none of the above methods 
provides guarantees on the reliability values com-
puted, specially for nonlinear problems. In con-
trast, the Probabilistic Continuous Constraint 
framework does not suffer from this limitation, 
guaranteeing safe bounds for the probability of 
failure.

3  Continuous Constraint 
Programming

Continuous constraint programming has been 
widely used to model safe reasoning in applications 
where uncertainty arises. A Continuous Constraint 
Satisfaction Problem (CCSP) (Lhomme 1993, 
Benhamou, McAllester, & van Hentenryck 1994, 
Sam-Haroud & Faltings 1996) is a triple X D C, ,  
where X is a tuple of n real variables x xn1, …, , 
D is a Cartesian productof intervals I In1 × … ×  
(a box), where each Ii  is the domain of variable xi  
and C is a set of numerical constraints (equations 
or inequalities) on subsets of the variables in X. A 
solution of the CCSP is a value assignment toall 
variables satisfying all the constraints in C. The 
feasible space  is the set of all CCSP solutions 
within D.

Constraint reasoning relies on branch-and-prune 
algorithms to obtain sets of boxes that cover exact 

solutions for the constraints (the feasible space). 
These algorithms begin with an initial crude cover 
of the feasible space (the initial search space, D) 
which is recursively refined by interleaving pruning 
and branching steps until a stopping criterion is 
satisfied. The branching step splits a box from the 
covering into sub-boxes (usually two). The pruning 
step either eliminates a box from the covering or 
reduces it into a smaller (or equal) box maintaining 
all the exact solutions. Pruning is achieved through 
a constraint propagation algorithm ( ) which 
combines constraint propagation and consistency 
techniques (Benhamou, Goualard, Granvilliers, & 
Puget 1999) based on interval analysis methods 
(Moore 1966).

Interval analysis is an extension of  real analy-
sis that allows computations with intervals of 
reals instead of  reals. Common operations and 
unary functions are extended for interval oper-
ands. For instance, [1,2]  +  [3,6] results in the 
interval [4,8], which encloses all the results from 
a point-wise evaluation of  the real arithmetic 
operator on all the values of  the operands. In 
practice these extensions simply consider the 
bounds of  the operands to compute the bounds 
of  the result, since the involved operations are 
monotonic.

Interval extensions [f], allow computing enclo-
sures of the range of real functions f, over boxes. 
The natural interval extension of a function is 
obtained by evaluating its expression for interval 
arguments using interval arithmetic.

The branch-and-prune algorithm usually main-
tains two coverings of the feasible space  of a 
CCSP X D C, , : one outer and one inner box 
cover, as follows.

Outer Box Cover A set of almost disjoint boxes1 
 = {B1, …, Bn}, where ∀ ⊆ ∧ >≤ ≤1 0i n i iB D vol B( ( ) ), 

is an outer box cover of  iff  F ⊆
=i

n
iB

1∪ .

A complementary concept is that of inner box 
cover, where an inner box of a CCSP is a box 
totally contained in the feasible space.

Inner Box A box B D⊆  with vol B( ) > 0  is an inner 
box of  iff  B ⊆ F .

Inner Box Cover A set of almost disjoint boxes 
F■ = , …,{ }B Bn1  is an inner box cover of  iff  

i
n

iB
=

⊆
1∪ F .

We are particularly interested in maintaining an 
inner box cover that is a subset of the outer box 
cover.

1Two boxes B1 and B2  are almost disjoint iff   vol(B1 ∩ B2) = 0. 
The volume of a box B ⊆ n is the product of the width 
of its intervals, i.e., vol B wid I wid In( ) ( ) ( ).= × … ×1
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Joint Box Cover A joint box cover  of  is a pair 
〈 , 〉, with  ⊆ .

Often it is important to know whether a joint 
box cover represents the feasible space more accu-
rately than another. For this purpose we define a 
partial order ( ) as follows.

Tighter Joint Box Cover Given a CCSP X D C, ,  
and two joint box covers of , 1 = 〈 1, 1〉  
and 2 = 〈 2, 2〉, 2 is a tighter joint box 
cover of  than 1, (written 2  1) iff:

1 ⊇ 2 and  1 ⊆  2

The branch-and-prune algorithm B & P  
(Algorithm 1, similar to (Granvilliers & Benhamou 
2006)) receives a joint box cover and computes a 
tighter one. For that purpose, and while the stop-
ing criterion is not satified, the algorithm removes 
a box from the outer box cover that, simultane-
ously, verifies the eligible predicate and is selected 
by the order function (line 2), and splits it (line 
3). Subsequently it modifies the inner and outer 
box covers of  the joint cover. If  the retrieved box 
is already in the inner box cover (line 4) then it 
is replaced by the boxes resulting from the split, 
which are also added to the outer box cover. Oth-
erwise (line 5) the boxes resulting from the split, 
are pruned by the constraint propagation algo-
rithm and added to the outer box cover (line 6). 
Those that are inner boxes are also added to the 
inner box cover (line 7).

Typically, in Algorithm 1, the split function splits 
the box by the midpoint of its largest interval; the 
inner predicate relies on natural interval extensions 

induced by each constraint2, replacing the variables 
by the intervals of the box, and checking whether 
all values in the resulting interval are solutions for 
that constraint; and the eligibleε predicate requires 
the width of the largest interval of the box to be 
larger than a given ε . The stop predicate imposes 
the stopping criterion and the order function speci-
fies which box is selected for processing. Both stop, 
order and ε  are parameterizable.

4  Probabilistic Constraint 
Programming

In classical CCSPs, uncertainty is modeled by 
intervals that represent the domains of the vari-
ables. Constraint reasoning reduces uncertainty 
providing a safe method for computing a set of 
boxes enclosing the feasible space. Nevertheless 
this paradigm cannot distinguish between differ-
ent scenarios and all combination of values within 
such enclosure are considered equally plausible. In 
(Carvalho 2012) and (Carvalho, Cruz, & Barahona 
2013) the authors proposed the Probabilistic Con-
tinuous Constraint paradigm (hereafter referred as 
PC), that extends the continuous constraint frame-
work with probabilistic reasoning, allowing to 
further characterize uncertainty with probability 
distributions over the domains of the variables.

4.1  Probabilistic continuous constraints

Probability provides a classical model for dealing 
with uncertainty (Halpern 2003). The basic ele-
ments of probability theory are a) random vari-
ables and b) events, which are appropriate3 subsets 
of the sample space Ω . A probabilistic model is an 
encoding of probabilistic information that allows 
the probability of events to be computed, accord-
ing to the axioms of probability. In the continuous 
case, the usual method for specifying a probabilis-
tic model assumes a full joint PDF over the consid-
ered random variables.

In order to complement the interval bounded rep-
resentation of uncertainty with a probabilistic char-
acterization of the values distributions, we define a 
probabilistic continuous constraint space. Firstly, a 
probability space is associated with a CCSP.

PC Probability Space Given a CCSP X D C, , , 
the associated probability space is Ω, ,Bn P  where 
Ω ⊇ D, Bn is the n-dimensional Borel σ -algebra on 
Ω  and P is a probability measure.

Secondly, the variables of the CCSP are mapped 
onto random variables.

Algorithm 1.  B & P (〈 , 〉, C, ε, stop, order).
2In this paper we consider only inequality constraints.
3In the sense that it is possible to assign them a measure.
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PC Random Vector Given a PC probability space 
on x x D Cn1, …, ,, , an identity random vec-
tor X = , …,X Xn1  is considered, such that 
Xi

n: →R R is defined as Xi i( )Ω Ω= .

Thirdly, the probability measure P is defined.

PC Probability Measure Given a PC probability 
space, PC random vector X with joint PDF f ( )⋅  
and an event H B∈ n, the probability measure P is 
defined as:

P f x x dx dxn n( ) ( )H
H

= , …, …∫ ∫ 1 1

Finally, a probabilistic continuous constraint 
problem space may be defined.

PC Problem Space A PC problem space is a pair 
X D C f, , ,  where X D C, ,  is a CCSP and f is 

the joint PDF of the PC random vector X.

In this context, a PC event, hereafter referred as 
, is the feasible space of a CCSP X D C, , .

4.2  Multidimensional integration over a region

In general the multidimensional integral to obtain 
the probability of a PC event cannot be easily com-
puted, since it may have no closed-form solution 
or the event may establish a complex nonlinear 
integration boundary. The PC framework relies on 
continuous constraint programming to get a tight 
joint box cover 〈 , 〉 of  the region of integra-
tion  and on Taylor models integration tech-
niques to compute safe enclosures for the integrals 
over the obtained boxes.

Taylor Models A Taylor model of g n: →R R inside 
an n-dimensional box B is a pair p R, , where p is a 
polynomial and R is an interval satisfying, ∀ ∈x B, 
g x p x R( ) ( )∈ + . The order of the Taylor model is 
the degree of p.

A Taylor model of a function can be obtained 
from its multivariate Taylor expansion, using the 
interval evaluation of the highest order derivatives 
to compute rigorous bounds for the remainder.

Lemma 4.1 (From (Berz & Makino 1999)) Given a 
Taylor model p R,  of a function g n: →R R  inside 
an n-dimensional box B:

TM B B
I B g p x dx R vol B g x dx[ ] ( ) ( ) ( ) ( ), = + ∋∫ ∫

TMI[ ]  can be used to obtain a sharp enclosure 
for the integral of a function over some region 
defined as a box (for more details about verified 
quadrature with Taylor models see (Goldsztejn, 
Cruz, & Carvalho 2014)).

4.3  Probability of a PC event

The probability of a PC event can be enclosed by 
summing up the integral contributions of all the 
boxes from its joint cover, as follows.

Enclosure for the Probability of  Given a joint box 
cover  = 〈 , 〉 of  a PC event , an enclosure 
for the probability of  is given by4:

[ ]
∈

∈

, = ,

+ ,

∑
∑

\

[ ]( ) ( )[ ]

0 ( )[ ]
i

i

iTM
B

iTM
B

P f B fI

B fI
■

 ■

H 
H

H �H

H

Notice that for non inner boxes, where the fea-
sible region is some unknown subset of the box, 
the integral ranges from zero to the integral of the 
function over the box. In this case it is no longer 
worth computing a sharp (and more costly) enclo-
sure and a lower order Taylor model can be used.

Since Taylor Models are used to compute safe 
enclosures for the integral over each box, the result 
is guaranteed to include the correct probability 
value.

Algorithm 2 computes bounds for the prob-
ability of a PC event. It uses the B & P  algorithm 
where the stopδ  predicate imposes a specified accu-
racy δ  for the probability enclosure computed over 
its joint box cover argument (line 1) and the orderP 
function specifies that the box with highest uncer-
tainty in its probability enclosure is chosen first.

For a PC problem space, with an associated PC 
event , B & P  computes increasingly tighter cov-
ers of  until the intended accuracy δ  for its prob-
ability is reached (line 2). The final joint box cover 
is used to compute an enclosure for the probabil-
ity of 5 (line 3). The parametrization of B & P  
implies choosing boxes with higher uncertainty in 
their probability, in order to reduce such uncer-
tainty. In practice, the accumulation of round-

Algorithm 2.  probEnclose(〈〈X, D, C〉, f〉, ε, δ).

4The union hull interval operator   returns the smallest 
interval containing both interval arguments.
5In fact, in the implementation of the algorithm, the 
probability enclosure is maintained and updated during 
the process, to check the stop criterion, and then returned 
in the end.
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ing errors may prevent the algorithm to deliver 
the required accuracy. When this accuracy is too 
sharp, B & P  may stop because there are no more 
eligible boxes (all the boxes are already small wrt ε ) 
without achieving the required accuracy.

4.4  Reliability assessment

Reliability analysis can be used to analyze existing 
systems, thus being a significant support for those 
in charge of decision-making. In the following we 
describe how the PC framework can be used to 
obtain safe results on such problems.

For the formulation of a reliability assessment 
problem as a PC problem space, we distinguish 
between series and parallel systems.

Parallel and Series Systems as a PC problem space 
Consider a parallel system with an associated 
random vector X = , …,X Xn1  with joint PDF 
fx defined in ΩX ⊆ Rn and a set of k limit-state 
functions that define the failure event F as in (3). 
This system is modeled as a PC problem space, 

X D C f, , , , such that:

D X x x
C g x i k f f x

n

i

⊆ = , …,
= ≤ : ≤ ≤ =

ΩX

X

1
0 1{ ( ) } ( )

Its probability of failure is P P X D Cf = , ,( ( ))F  
and its reliability is P Ps f= −1 .

The formulation of a series system as a PC 
problem space is adapted from the previous, 
where C g x i ki= ≥ : ≤ ≤{ ( ) }0 1  and F ( )X D C, ,  
defines the success event. So the computed prob-
ability P P X D Cs = , ,( ( ))F  is the reliability of the 
system.

From these formulations, Algorithm 2 can 
be used to compute the probability of event 
H F= , ,( )X D C  and obtain enclosures for the 
reliability (or probability of failure) of series or 
parallel systems.

Notice that reliability problems do not impose 
bounds on the random variables, which is not pos-
sible to model in the PC framework, where D ⊆ ΩX  
must be a bounded box. Thus, to guarantee the 
safety of the computed probability enclosures 
when D ⊂ ΩX , a small correction term must be 
added to such enclosure. This is done by computing 
[ ]( )P D , an enclosure for the probability of event 
D F= , ,( {} )X D  and [ ]( ) [ ]( ),P PΩΩX\D D= −1  an 
enclosure for the neglected probability. Then the 
term [ ] [ ]( )0  P ΩX\D  is added to the enclosure 
computed by Algorithm 2.

5  Experimental Results

To illustrate the limitations of the classical tech-
niques (FORM, SORM and Monte Carlo) described 

in Section 2.1, several examples of reliability assess-
ment problems found in the literature are mod-
eled as PC problem spaces. The algorithms were 
implemented over RealPaver 1.0 (Granvilliers  & 
Benhamou 2006), and the experiments were carried 
out on an Intel Core i7 CPU at 2.4 GHz.

The results obtained with the classical 
approaches are compared with those computed 
with algorithm 2 with δ = −10 6, ε = −10 15 and a 
Taylor order of 6 for inner boxes (and 1 other-
wise), hereafter referred as PCTM. All the results 
obtained with the PCTM algorithm are presented 
after adding the correction term.

In the experiments, function NProbability (from 
Mathematica v9.0.0.0 Wolfram Research 2012)) 
with the default parametrization, is also used to 
compute the required probabilities as a comple-
mentary source of comparison. Although, in the 
proposed examples, all Mathematica estimates are 
within the enclosure computed by the PCTM algo-
rithm, this is not the case in general (see (Carvalho, 
Cruz, & Barahona 2013) for some examples). 
Moreover different parameterizations provide dif-
ferent values. Although the differences might be 
small, Mathematica does not provide bounds for 
the errors.

The first example illustrates the non linearity 
induced in the limit-state function resulting from 
the transformation of a non Gaussian distribution 
into a standard normal distribution.

Example  5.1. Consider the reliability prob-
lem, originally introduced in Hohenbichler & 
Rackwitz 1981, with X = ,X X1 2 , joint PDF 
f x x x x x x e x x x x
X ( ) ( ) ( )

1 2 1 2 1 2
1 2 1 2, = + + − + +  defined 

in Ω = ,∞ × ,∞[ ] [ ]0 0  and limit-state function 
g x x x x( )1 2 1 218 3 2, = − − .

Although the limit-state function is linear in the 
original space, it becomes highly nonlinear and has 
two design points in the standard normal space, 
due to the strong non normality of the random 
variables. Figure  1  shows the limit-state function 

Figure 1.   Linear limit-state in the original space and 
nonlinear in the standard normal space.
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(a) in the original space and (b) in the standard 
normal space.

The problem is formulated as a PC problem 
space:

X x x D
C g x x f f x x

= , = , × ,
= , ≤ = ,

1 2

1 2 1 2

0 30 0 30
0

[ ] [ ]
{ ( ) } ( )X

The bounds for D guarantee a negligi-
ble probability for the neglected Ω  region, 
[ ]( \ )P Ω D ≤ . × −4 5 10 11.

The results obtained with the classical 
approaches (from) and with the PCTM algorithm 
are shown in Table 1. It presents the approxima-
tions obtained by FORM and SORM methods 
when only one of the design points is considered 
and when both are considered for both transfor-
mations T1( )X  and T2( )X , described in (Hohen-
bichler & Rackwitz 1981). For Monte Carlo (MC) 
and PCTM algorithms this does not apply.

It is clear from Table 1 that the results obtained 
with FORM and SORM have a great variabil-
ity, depending on the chosen configuration, and, 
except for one, are outside the safe enclosure com-
puted by PCTM algorithm (in 0.12 seconds CPU 
time). Using Mathematica the obtained result (in 
0.12 seconds CPU time) was 0 294486 10 2. × − .

The next example illustrates a nonlinear limit-
state function where the original space is normal 
(although not standard normal).

Example 5.2. Consider the reliability prob-
lem from (Choi, Grandhi, & Canfield 2010), 
with X = ,X X1 2 ,  where X1 10 5~ ( )N ,  and 
X2 10 5~ ( )N ,  are independent random vari-
ables defined in Ω = R2, and limit-state function 
g x x x x( )1 2 1

4
2
42 20, = + − . The problem is formu-

lated as a PC problem space:

X x x D

C g x x

f e
x

= , = − , × − ,

= , ≤

=
− ( −

1 2

1 2

40 60 40 60

0

1
50

1
2

2
1 10

5

[ ] [ ]

{ ( ) }

π
)) +( )





− 2
2 10

5
x

The bounds for D guarantee a negligi-
ble probability for the neglected Ω  region, 
[ ]( )P Ω\D ≤ . × −2 8 10 13 .

The results obtained with the classical 
approaches (from (Choi, Grandhi, & Canfield 
2010, pag. 132–136)) where two SORM versions 
are considered (see (Choi, Grandhi, & Canfield 
2010, Chapter 4) for details) and with the PCTM 
algorithm are shown in Table 2.

The result obtained with FORM grossly 
overestimates the probability of  failure. Those 
obtained with both versions of  SORM are 
closer to the correct value, however are still far 
from the exact value. Simulation with Monte 
Carlo produces the result closer to the correct 
value with an 5.23% error. Using Mathematica 
the obtained result (in 1 17.  seconds CPU time) 
was 0.185252  ×  10−2, which is within the enclo-
sure computed by the PCTM algorithm (in 0.84 
seconds CPU time).

The problems in the following example are 
found in (Sørensen 2004) to illustrate series and 
parallel systems.

Example 5.3. Consider the reliability assessment 
problems from (Sørensen 2004, Note 6) (series 
system) and (Sørensen 2004, Note 7) (parallel 
system), with X = ,X X1 2 , where X1 and X2 are 
independent standard normal random variables 
defined in Ω = R2, and the limit state functions of 
Table 3.

Table 1.  Probability of failure × 102.

u*
1 alone u*

2 alone u*
1 and u*

2

MC PCTMFORM SORM FORM SORM FORM SORM

T1(X) 0.269 0.279 0.023 0.016 0.292 0.296
T2(X) 0.404 0.294 0.014 0.015 0.417 0.308 0.294 [0.294429, 0.294530]

Table 2.  Probability of failure × 102.

FORM 0.9005
SORM Breitung 0.2221
SORM Tvedt 0.2087
MC 0.1950
PCTM [0.185162, 0.185263]

Table 3. L imit state functions.

Series system Parallel system

g1(x1, x2) ex1 - x2 + 3 ex1 - x2 + 1
g2(x1, x2) x1 - x2 + 5 x1 - x2 + 1
g3(x1, x2) ex1+4 - x2 ex1+2 - x2

g4(x1, x2) 0.1x2
1 - x2 + 4 0.1x2

1 - x2 + 2
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Figure 2 shows the limit-state functions and the 
safe/failure regions of these problems. The prob-
lems are formulated as PC problem spaces:

D X x x

f e

C g x y

x x
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= , ≥ :

− +

[ ] [ ]
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2 1

2
2
2

π
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i
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0 1 4

}
{ ( ) }

series system
parallel system

In both problems 10 standard deviations around 
the mean value are assumed for the bounds of D, 
with [ ]( )P Ω\D ≤ . × −2 8 10 13 .

The results obtained with the classical approach 
for series and parallel systems analysis, where sim-
ple (SB) and Ditlevsen (DB) bounds are considered 
(see (Sørensen 2004, Notes 6 and 7) for details) and 
with the PCTM algorithm6 are shown in Table 4.

We conclude that the simple bounds are too wide 
to be informative. The more accurate Ditlevsen 
bounds, for the series system, do not include the 
exact value in the safe enclosure computed by the 
PCTM algorithm (in 0.38 seconds CPU time). For 
the parallel system, they do include the safe enclo-
sure computed by the PCTM algorithm (in 0.73 
seconds CPU time) but are much wider. The results 
obtained with Mathematica were, for the series 

system, 0.0312962  ×  10−2 (in 0.92 seconds CPU 
time) and, for the parallel system, 0.170394 × 10−2 
(in 0.47 seconds CPU time).

6  Conclusions and Future Work

In this paper we propose to use the Probabilistic 
Continuous Constraints framework to deal with 
reliability assessment problems. Given its ground-
ing on continuous constraint solving, this frame-
work computes safe bounds for the reliability of 
series and parallel systems, contrary to classical 
approaches. The various kinds of approximations 
used by these approaches may turn the computed 
reliability value of little practical use, since they 
do not provide any bounds to the errors incurred. 
This is particularly significant in systems modeled 
by means of nonlinear constraints.

Moreover, the proposed framework, while guar-
anteeing the robustness of the computed values, 
does it very efficiently, being highly competitive 
when compared with Mathematica, that computes 
non-guaranteed results.

In the future the authors aim to extend the 
framework to address systems that are formulated 
as a combination of series and parallel compo-
nents. Another interesting add-on would be the 
ability to model problems with a mixture of inte-
ger and continuous random variables, since these 
are an important class of problems appearing in 
science and engineering.
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