
Amr Hany Saleh

The European Master’s Program in Computational Logic

Masters Thesis

Constraint Reasoning with Local Search for
Continuous Optimization

Dissertação para obtenção do Grau de Mestre em Logica Computicional

Orientador : Jorge Cruz, CENTRIA, Universidade Nova de Lisboa

Júri:

Presidente: Pedro Barahona

Arguentes: Jorge Cruz
Sergio Tessaris

July, 2014

Constraint Reasoning with Local Search for Continuous Optimization

Copyright c© Amr Hany Saleh, Faculdade de Ciências e Tecnologia, Universidade Nova
de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

Declaration of Authorship

I, Amr Hany Saleh, declare that this thesis titled, “Constraint Reasoning with Local
Search for Continuous Optimization” and the work presented in it are my own. I confirm
that:

� This work was done wholly or mainly while in candidature for a research degree at
this University.

� Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

� Where I have consulted the published work of others, this is always clearly at-
tributed.

� Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

iii

Acknowledgements

I would like to thank and express my highest gratitude to all those who gave me the
possibility to complete this thesis. Firstly, I would like to thank my supervisor, Professor
Jorge Cruz for his guidance, supervision, valuable suggestions and vision he provided
during the course of working on this thesis. I am also very thankful to the EMCL com-
mission for giving me the chance to study in a highly acknowledged and competitive
masters program like EMCL.

I would like to thank also my family and all my friends for their support and encour-
agement during the whole period of my studies, without which, I would never have been
able to complete this work. Finally, am very thankful to my close friends who helped me
along the journey and gave me all their support.

iv

Abstract

Optimization is a very important field for getting the best possible value for the opti-
mization function. Continuous optimization is optimization over real intervals. There are
many global and local search techniques. Global search techniques try to get the global
optima of the optimization problem. However, local search techniques are used more
since they try to find a local minimal solution within an area of the search space.

In Continuous Constraint Satisfaction Problems (CCSP)s, constraints are viewed as
relations between variables, and the computations are supported by interval analysis.
The continuous constraint programming framework provides branch-and-prune algo-
rithms for covering sets of solutions for the constraints with sets of interval boxes which
are the Cartesian product of intervals. These algorithms begin with an initial crude cover
of the feasible space (the Cartesian product of the initial variable domains) which is re-
cursively refined by interleaving pruning and branching steps until a stopping criterion
is satisfied.

In this work, we try to find a convenient way to use the advantages in CCSP branch-
and-prune with local search of global optimization applied locally over each pruned
branch of the CCSP. We apply local search techniques of continuous optimization over
the pruned boxes outputted by the CCSP techniques.

We mainly use steepest descent technique with different characteristics such as penalty
calculation and step length. We implement two main different local search algorithms.
We use “Procure”, which is a constraint reasoning and global optimization framework,
to implement our techniques, then we produce and introduce our results over a set of
benchmarks.

Keywords: Optimization, Constraint Satisfaction, Local search . . .

v

Contents

1 Introduction 1

2 Continuous Optimization 4
2.1 Local Search Optimization . 6

2.1.1 Unconstrained Local Search . 6
2.1.2 Constrained Local Search . 8

2.2 Global Search Optimization . 10
2.2.1 Deterministic methods . 11
2.2.2 Meta-heuristic methods . 12

3 Constraint Satisfaction over Continuous Domains 14
3.1 Interval Representation and Analysis . 16
3.2 Constraint Propagation . 18
3.3 Consistency Techniques . 21

4 Hybrid Local Search Constraint Optimization Algorithms 23
4.1 Procure, a quick introduction . 25
4.2 Random Local Search . 27
4.3 Armijo Rule with Quadratic Penalty Steepest Descent 28
4.4 Box Ratio with Separate Penalty Steepest Descent 34

5 Testing and Analysis 42
5.1 First Optimization Problem: Dipigri . 43
5.2 Second Optimization Problem : HS108 . 48
5.3 Benchmarks and Comments . 51

6 Conclusion and Future work 58

vi

List of Figures

3.1 Standard propagation algorithm . 19

4.1 Pseudo code of the general CCSP-LS hybrid technique 24
4.2 Example 1, simple optimization problem 26
4.3 Plot of Procure example . 27
4.4 Random Local Search algorithm . 28
4.5 Steepest Descent with Quad. Penalty and Armijo 29
4.6 Quadratic Penalty objective function algorithm 30
4.7 Armijo rule line search algorithm . 31
4.8 Steepest Descent with Quad. Penalty and Armijo steps Iterations for one box 32
4.9 Modification of Steepest Descent with Quad. Penalty and Armijo 33
4.10 Modified Steepest Descent with Quad. Penalty and Armijo steps iterations

for one box . 33
4.11 Modified Steepest Descent with Quad. Penalty and Armijo steps Iterations

with constraints violations . 33
4.12 Steepest Descent with Separate penalty and Box ratio 36
4.13 Box ratio algorithm . 37
4.14 Better Point algorithm . 38
4.15 Penalty and Violation related functions . 38
4.16 Box ratio steepest descent . 39
4.17 Modified Box Ratio with Separate Penalty Steepest Descent Algorithm . . 40

5.1 Example 2, Dipigri optimization problem 43
5.2 Results of the five different algorithms on Dipigri Problem 44
5.3 Dipigri problem algorithms convergence over time 45
5.4 Dipigri problem algorithms convergence over the first 50 seconds 46
5.5 Dipigri average number of branched boxes and the average time per box

r = 0.01 . 47
5.6 Objective function vs Penalty over time in BRSP 47

vii

LIST OF FIGURES viii

5.7 Objective function vs Penalty over time in AQSD 48
5.8 Example 3, HS108 optimization problem . 49
5.9 Average results of the five different algorithms on HS108 problem 49
5.10 HS108 problem algorithms convergence over time with r = 0.2 50
5.11 Dipigri problem algorithms convergence over the first second 51
5.12 HS108 objective function vs Penalty over time in AQSD 52

1
Introduction

In economics, engineering, scientific studies, optimization concepts and tools are used to
model quantitative decisions. The aim is always to try to find the “absolute best” deci-
sion which corresponds to the minimum (or maximum) of the suitable model’s objective.
At the same time, a given collection of feasibility constraints might be modelled in the
problem. The best decision must be satisfying these constraints. The objective in an opti-
mization model expresses overall system performance, such as profit, loss, risk, or error.
The constraints originate from physical, technical, economic or some other considera-
tions.

An optimization problem in mathematical settings is a function representing the ob-
jective of the problem over a set of variables having a domain, together with a set of
constraints over these variables. Optimization is typically divided into two closely re-
lated main research fields. Global optimization is the first research field. It is concerned
with finding a global optimal solution for an optimization problem in a mathematical
setting.

The second field is the local optimization. Local optimization is the term used for
localizing the search of the optimal solution within a part of the search space of the opti-
mization problem.

There are many techniques for solving optimization problems depending on the na-
ture of the problem, whether it contains constraints (constrained optimization) or not
(unconstrained optimization). Also depending on the aim of the search, whether to find
a local optimum or global optimum.

The concept of constraint satisfaction is very close to optimization. It can be viewed
as an optimization problem that does not contain an objective function that needs to be
optimized. However, the model contains feasibility constraints which are needed to be

1

1. INTRODUCTION

satisfied by the variables of the problem.
Constraint satisfaction problems and their techniques are divided mainly into two

parts: CSP, which is the normal Constraint Satisfaction Problem (models) in discrete
mathematical settings, and CCSP, which is the constraint satisfaction problem in Continuous
settings. Continuous means that the domains of the variables of the problem are infinite.
In this thesis, we focus more on CCSP.

With these two very brief introductions, we can observe that constraint satisfaction
problems and optimization are very close in their definitions. Constraint satisfaction
seeks a feasible solution, and optimization seeks an optimal solution. An optimization
problem can be defined as a constraint satisfaction problem with an additional optimiza-
tion function that should be optimized along with satisfying the constraints in the prob-
lem. Therefore, there is a potential of using techniques from both fields and combine
them.

In the recent years, hybrid models that use optimization with constraint satisfaction
appeared, as it was shown in [22]. The recent interaction between optimization and con-
straint satisfaction promises to change both fields. It might be in the near future that
portions of both will merge into a single problem-solving technology for discrete and
continuous problems.

In this work we present two techniques that combine local search optimization with
continuous constraint satisfaction. The main aim is to find a global optimal solution
by dividing the search space using constraint satisfaction’s branching techniques into
areas (boxes), and apply local search on these areas, keeping track of the optimal solution
found so far. For each divided area in the search space, CCSP pruning techniques are
applied, after which we use one of the two local search techniques, in order to find the
local optimal solution of this search area.

The first technique is Armijo Rule with Quadratic Penalty Steepest Descent, and the
second is Box Ratio with Separate Penalty Steepest Descent. We make comparisons be-
tween these two techniques, trying to find a conclusion of which is having better timing
and suitability for the given model. Moreover, we try to investigate the quality of the
local search in every box, as well as the convergence and stopping strategies used.

The rest of the work is organized as follows: in chapter 2, we discuss the continuous
optimization techniques in mathematical settings. We present a survey on the current
techniques of global and local optimization. Focusing more on the specific techniques
that we use to implement our hybrid local search with continuous constraint satisfaction
(CCSP-LS) algorithms.

Afterwards, in chapter 3, we show the necessary theory needed for this work about
constraint satisfaction techniques over continuous domains. First, we introduce interval
analysis and interval function, since the theory of CCSP is built over these concepts. Then
we discuss briefly the concept of constraint propagation that is used to prune the search
space. We also discuss consistency techniques used in constraint satisfaction.

After presenting the background needed for this work, we introduce the two hybrid

2

1. INTRODUCTION

CCSP-LS techniques in chaper 4. We first introduce the generic algorithm for CCSP-LS.
Then, in section 4.1, we give a brief overview of “Procure", the framework we use in the
implementation of the algorithms. In section 4.3 we show the first hybrid technique and
in section 4.4 we discuss the second technique.

In chapter 5, we show the tests we conducted on the algorithms. We run the algo-
rithms over two main examples, getting information of the pruning speed and the time
taken by local search techniques to find a local optimum. Moreover, we run the algo-
rithms on a set of benchmarks, and show the time and comparisons between the different
techniques.

In chapter 6, we discuss the results of the experiments conducted in chapter 5. We
compare the different techniques and point out the strength and weakness of every tech-
nique. Moreover, we suggest future work ideas to investigate further the research topic.

3

2
Continuous Optimization

Optimization is important in science, mathematics and everyday problems. It dates back
to 300 B.C., when Euclid considered the minimal distance between two points to be a
line, and proved that a square has the greatest area among the rectangles, given the total
length of edges.

In order to use optimization, we need to identify an objective to a given problem,
in other words, a model. The objective depends on certain characteristics of the system,
called variables. The goal of the objective is to find values of the variables that optimize the
objective. The variables in the given model might be constrained, meaning that they have
restrictions over their domains. In this thesis, we deal with optimization in mathematical
settings with variables having continuous domains.

In mathematics, an optimization problem is the minimization or maximization of an
objective function f over a vector of variables x. This is subject to a vector of constraints
c that the variables in x must satisfy.

An optimization problem can be written as:

min
x∈Rn

f (x) subject to

{
ci(x) = 0 1 ≤ i ≤ k
ci(x) ≤ 0 k < i ≤ m

(2.1)

such that,

• x = (x1, x2, . . . , xn) is a vector of n variables of the problem.

• A function f : Rn → R which is the objective function to be minimized.

• Constraints {ci(x) = 0 |1 ≤ i ≤ k} are equality constraints over the variables in
the vector x;

4

2. CONTINUOUS OPTIMIZATION

• Constraints {ci(x) ≤ 0 |k < i ≤ m} are inequality constraints over the variables
in the vector x;

Transformation of the equations in the given model is often necessary to express an
optimization problem into the standard form shown above. A very common example
is changing maximization problems into minimization problems by negating the objective
function f to −f .

An assignment of values to all variables in x represents an (candidate solution) option.
The constraints represent limitations on the options. A feasible option is a solution that
does not violate any constraint ci. The objective function represents the cost d, d = f (x).
The set of all feasible options is called the solution space. A global optimum, of the prob-
lem, x∗, which is also called a global minimizer since the standard optimization problem
is a minimization problem, is a feasible solution x∗ = (x∗1, x

∗
2, . . . , x

∗
n), whose cost is less

than or equal to any solution belonging to the space of solutions.

∀x f (x∗) ≤ f (x) (2.2)

Normally, finding a global optimum is not as easy as finding a local optimum. A local
optimum location of the problem, also noted as x∗, is a feasible solution whose cost is less
than or equal to any other feasible solution belonging to a neighborhood N , which is a
subset of the search space S of the problem; N ⊆ S. A neighborhood N of x∗ is an open
set of vectors that contains x∗.

∀xx∈N f (x∗) ≤ f (x) (2.3)

Most of the optimization algorithms in use today are iterative. They have a solid theo-
retical basis, but the theory often allows wide latitude in the choice of certain parameters,
and algorithms are often "engineered" to find suitable values for these parameters and to
incorporate other heuristics.

Analysis of algorithms tackles such issues as whether the iterates can be guaranteed
to converge to a solution; whether there is an upper bound on the number of iterations
needed, as a function of the size or complexity of the problem; and the rate of conver-
gence, particularly after the iterates enter a certain neighborhood of the solution.

Algorithmic analysis is typically worst-case in nature. It gives important indications
about how the algorithm will behave in practice, but does not tell the whole story. A key
aspect in solving optimization problems is the recognition of optimal solutions. Under
certain assumptions, derivatives of the objective function and constraints can be used to
define a set of test conditions to verify if a candidate solution is in a good place with
respect to the objective function.

However it is not easy to check global optimum, even when the objective functions
and constraints are differentiable, due to the difficulty in obtaining an overview of these

5

2. CONTINUOUS OPTIMIZATION 2.1. Local Search Optimization

functions. In the particular case of convex optimization problems, where both the objec-
tive function as well as the solution space is convex, meaning all local optima are nec-
essarily a global optimum. For the general case of non-convex problems, several global
optimization algorithms have been proposed, some of which use techniques of integrated
global local search procedures exploring the space of solutions in partitions.

Often, the variables in the model are constrained. However, some optimization prob-
lems are constraints-free. This leads to dividing the optimization problems into con-
strained and unconstrained optimization. Moreover, optimization algorithms are mainly
divided into local search algorithms, which targets finding the local optimum and global
search algorithms, which targets finding the global optimum,

Section 2.1 is dedicated to local search algorithms and their strategies to take advan-
tage of the characteristics of different types of optimization problems. Afterwards, in sec-
tion 2.2, global optimization algorithms is presented, whose main objective is to achieve
global optimal solutions and therefore should introduce strategies to prevent their termi-
nation in local optimal places (with values of the objective function significantly different
from the global optimum).

2.1 Local Search Optimization

Local search algorithms are iterative. They begin with an initial guess, whether it is a
random guess or a point supplied by the user who has knowledge about the application
and the data set, and may be in a good position to choose a reasonable estimate of the
solution. Beginning at the starting point, the algorithm generates a sequence of iterations
to try to find points with improved estimates. The algorithm terminates when either no
more progress can be made or when it seems the point in the final iteration has been
approximated with sufficient accuracy.

A local search algorithm is distinguished from the others by the strategy of deciding
how to move from one iteration to the next. The algorithm uses information about the
objective function f (x) and the constraints ci(x) and their derivatives, possibly combined
with information gathered at earlier stage iterations of the algorithm.

In this section, we will give an overview of the local search algorithms for uncon-
strained and for constrained optimization problems. For more detailed discussion of each
of these approaches, we suggest reading the classical references [50, 12, 17] in this area.

2.1.1 Unconstrained Local Search

Unconstrained optimization problem is defined by optimizing an objective function with
no restrictions on the values of the variables involved in the function. The standard
mathematical formula for the unconstrained optimization problem is:

min
x∈Rn

f (x) (2.4)

6

2. CONTINUOUS OPTIMIZATION 2.1. Local Search Optimization

which is an instance of equation 2.1 with m = 0. There are two main strategies for
unconstrained optimization; Line Search and Trust Region.

In Line Search strategy [36], the algorithms depend on two main factors to obtain a
new vector xk+1 from the current iteration vector xk: a direction dk and a step α. The
general mathematical form of the Line Search algorithm is:

xk+1 = xk + αkdk such that αk > 0 (2.5)

At each iteration, a search direction dk and a positive scalar αk are decided. αk decides
how far to move along dk. Therefore, line search strategy is mainly divided into two main
criteria: the selection of the step length and deciding over the direction.

The selection of the step length always faces a trade-off between finding the best scalar
value that would give a substantial reduction of f , and the computation time to get such
value. Therefore, line search algorithms try out a sequence of values of αk and stop when
certain conditions are satisfied.

A very popular algorithm for calculating the step length is the exact line search algo-
rithm which has the following formulation:

αk = min
α

f (xk + αdk), (2.6)

with the following stopping condition:

f (xk + αkdk) < f (xk). (2.7)

Another popular algorithm for calculating step length is the inexact line search algo-
rithm. It has the following stopping condition:

f (xk + αdk) ≤ f (xk) + c1α∇f ᵀk dk (2.8)

Typically, 0 < c1 ≤ 1 is a scalar factor. ∇fx is the vector of partial derivatives of f over
the variables in the vector x, which is also called the gradient of f at the point x. The
reduction in f is proportional to both α and the directional derivative multiplied by the
direction: ∇f ᵀk dk. This method is also called the Armijo rule, named after Larry Armijo
[2].

Many popular optimization algorithms are based on the line search strategy. For ex-
ample, one of the very intuitive algorithms is the steepest descent algorithm, mentioned in
[37, 1]. It sets the direction dx to be the gradient of the objective function, ∇f , and it has
the following formulation on obtaining xk+1 from xk:

f (xk+1) = f (xk)− αk∇fk (2.9)

Steepest descent uses the directional derivative ∇fk to get the direction of the gradi-
ent of the objective function at the point xk. Then, since the problem is a minimization

7

2. CONTINUOUS OPTIMIZATION 2.1. Local Search Optimization

problem, we take the opposite direction of the gradient −∇fk .
Other popular line search algorithms include The Newton, The Quasi-Newton and Con-

jugate Gradient algorithms.
In the Trust Region strategy [35, 7], the collected information about f is used to con-

struct a model function mk, whose behavior near the current point xk is similar to that of
the actual objective function f . Because the model mk may not be a good approximation
of f when x∗ is far from xk, we restrict the search for a minimizer of mk to some region
around xk. We try to find a candidate step p by approximately solving the following
subproblem:

min
p

mk(xk + p) where xk + p lies inside the trust region (2.10)

If p does not give a sufficient decrease in the objective function f , then the trust region
is too big. Therefore, it is shrinked and the subproblem is reevaluated. The trust region
has a radius ∆ and the step p is normally bounded by it; ||p||2 ≤ ∆. The definition of the
model for mk is usually a quadratic function having the following formulation:

mk(xk + p) = fk + pᵀ∇fk +
1

2
pᵀBkp, (2.11)

where fk and∇fk are the objective function and its gradient values at the point xk, respec-
tively. Bk is usually the second derivative of fk or an approximation to it.

The trust region algorithm technique is to first choose a maximum trust-region radius
∆k, and then seek a direction and step that gets the best improvement possible subject
to this region constraint. If this step proves to be unsatisfactory, we reduce the radius
measure ∆k and try again.

There are several popular trust region algorithms including the Cauchy point algo-
rithm, the Dogle method and the Steihaug’s approach [45].

2.1.2 Constrained Local Search

Constrained optimization is the normal case of optimization problem, having the stan-
dard minimization formulation, which we saw in equation 2.1. The set Ω of feasible
points that are candidate solutions for the optimization problem 2.1 is defined by:

Ω = {x ∈ Rn|ci(x) = 0, 0 ≤ i ≤ k; ci(x) ≤ 0, k < i ≤ m} (2.12)

Such that n is the number of variables in vector x. Equation 2.1 can be rewritten to:

min
x∈Ω

f (x) (2.13)

Constrained Local search can be divided into two main categories depending on the
nature of the objective function f and the constraints ci(x). These parts are Linear pro-
gramming and Non-linear constraint optimization.

8

2. CONTINUOUS OPTIMIZATION 2.1. Local Search Optimization

Linear programming [25], which dates back at least as far as Fourier, is an important
special case of constrained optimization problems for which very efficient specialized al-
gorithms are available. These problems are specified by having a linear objective function
f and linear constraints ci.

In these specific problems, the contours of the objective functions are planner. There-
fore, a local minimum or global minimum must lie on a vertex of the feasible set.

There are two important algorithms for linear programming: The Simplex Method and
The Interior Point Method.

The simplex method which was developed by George Dantzig [9] moves from ver-
tex to neighboring vertex of the feasible set, decreasing the objective function with each
move, and terminating when it cannot find a neighboring vertex with a lower objective
value. It mainly depends on maintaining the KarushKuhnTucker (KKT) condition and
performing some operations on the feasible set if one of the KTT conditions got violated.

Interior-point methods, introduced by Karmarkar [26], approach the boundary of the
feasible set only in the limit. They may approach the solution either from the interior or
the exterior of the feasible region, but they never lie on the boundary of this region. Each
interior-point iteration is expensive to compute and can make significant progress toward
the solution, while the simplex method usually requires a larger number of inexpensive
iterations.

Geometrically speaking, the simplex method works its way around the boundary of
the feasible polytope, testing a sequence of vertices in turn until it finds the optimal one.
Interior-point methods approach the boundary of the feasible set only in the limit. They
may approach the solution either from the interior or the exterior of the feasible region,
but they never actually lie on the boundary of this region.

Non-Linear Constraint Optimization category is what mainly most constrained opti-
mization problems classification fall under. It is an optimization problem where the ob-
jective function f or one of the constraints ci(x) are not linear.

There are many algorithms and approaches developed for solving non-linear con-
straint optimization problems. However, most of them depend on transforming or sim-
plifying the problem into subproblems, that have efficient algorithms to solve them.

Very popular techniques for solving non-linear constraint optimization problems are
the penalty and augmented Lagrangian methods. These techniques’ idea is mainly to
transform the constrained problem into unconstrained problems by applying penalty
value for the constraints involved in the problem, generating a new objective function
that includes these penalty values. One of the very popular algorithms is the quadratic
penalty method, mentioned in [50], which adds to the objective function an additional term
for every constraint in the problem. The newly obtained objective function Q(x) has the
following formula:

Q(x) = f (x) +
1

2µ

i=k∑
i=0

c2
i (x) +

1

2µ

i=m∑
i=k+1

max(ci(x), 0)2 (2.14)

9

2. CONTINUOUS OPTIMIZATION 2.2. Global Search Optimization

Such that µ > 0 is the penalty parameter controlling the impact of the penalty val-
ues over the obtained objective function Q . Afterwards, we try to minimize the uncon-
strained objective function Q using the algorithms for unconstrained optimization prob-
lems with a series of increasing values of µ.

Another penalty oriented method is the augmented Lagrangian method, where we
define a function that combines the properties of the quadratic penalty function of the
Lagrangian function. The Lagrangian function for the standard optimization problem
defined in (2.1) is defined as follows:

L(x, λ) = f (x)−
i=m∑
i=0

λici(x), (2.15)

where λi is a vector of Lagrangian multipliers. This so-called augmented Lagrangian
function has the following form for equality-constrained problems:

LA(x, λ;µ) = f (x)−
i=k∑
i=0

λici(x) +
µ

2

i=k∑
i=0

c2
i (x) (2.16)

We try to fix the value of λ to some estimate of the optimal Lagrange multiplier vector,
then fix µ to a value greater than zero, then find a value of x that approximately mini-
mizes LA(x, λ;µ). The augmented Lagrangian method was first introduced by Hestences
[21] and Powell [39]. It was also mentioned in [51].

From the other several algorithms available for non-linear constraint optimization
problems, there are also the sequential quadratic programming; introduced in late 1970’s,
described in [5]. It can be used both in line search and trust-region frameworks, and it is
appropriate for both small or large problems. Here the idea is to model the original prob-
lem by a quadratic subproblem at each iteration, and to define the search direction as the
solution of this subproblem. The objective in this subproblem is an approximation of the
Lagrangian function and the constraints are linearizations of the original constraints. The
new iteration is obtained by searching along this direction until a certain merit function
is decreased. Sequential quadratic programming methods have proved to be effective
in practice. They are the basis of some of the best software for solving both small and
large constrained optimization problems. They typically require fewer function evalua-
tions than some of the other methods, at the expense of solving a relatively complicated
quadratic subproblem at each iteration.

2.2 Global Search Optimization

Obtaining global optimum in problems with constraints in continuous domains requires
the use of strategies that are able to seek solutions in the search space without getting
trapped in local minima. One of the famous reference books of global optimization is
written by Horst et al. [23].

10

2. CONTINUOUS OPTIMIZATION 2.2. Global Search Optimization

One class of methods for solving the global optimization problem are the determin-
istic methods. One of the techniques of the deterministic methods, in other words: exact
methods, is to use a process of subdividing the feasible region and using information
about the objective function to obtain a lower bound on the objective in that region, lead-
ing to the branch-and-bound algorithm. These methods can provide assurance of the
quality of the solution found.

There is also another class of methods which depends on meta-heuristics. However,
this class of methods does not guarantee the quality of the solution.

In this section, we will give a brief introduction to the the different classes of global
optimization algorithms.

2.2.1 Deterministic methods

Deterministic algorithms for continuous global optimization problems guarantee that by
the termination of it to have found at least one global minimum of the given optimization
problem. However, since the domains of the variables are continuous, the algorithms are
more likely to take a very long time to find a global minimum.

There are several deterministic global optimization algorithms. We will discuss the
branch-and-bound algorithms, discussed in [19, 27]. These algorithms are considered the
most popular deterministic global optimization methods. To apply branch-and-bound,
one must have a means of computing a lower bound on an instance of the optimization
problem and a means of dividing the feasible region of a problem to create smaller sub-
problems. There must also be a way to compute an upper bound (feasible solution) for
at least some instances; for practical purposes, it should be possible to compute upper
bounds for some set of nontrivial feasible regions. The method starts by considering the
original problem with the complete feasible region, which is called the root problem.

The lower-bounding and upper-bounding procedures are applied to the root prob-
lem. If the bounds match, then an optimal solution has been found and the procedure
terminates. Otherwise, the feasible region is divided into two or more regions, each strict
subregions of the original, which together cover the whole feasible region, these subprob-
lems partition the feasible region. These subproblems become children of the root search
node.

The algorithm is applied recursively to the subproblems, generating a tree of sub-
problems. If an optimal solution is found to a subproblem, it is a feasible solution to the
full problem, but not necessarily globally optimal. Since it is feasible, it can be used to
prune the rest of the tree: if the lower bound for a node exceeds the best known feasible
solution, no globally optimal solution can exist in the subspace of the feasible region rep-
resented by the node. Therefore, the node can be removed from consideration. The search
proceeds until all nodes have been solved or pruned, or until some specified threshold is
met between the best solution found and the lower bounds on all unsolved subproblems.

Some other strategies include Bayesian search algorithms, introduced by Jonas Mockus

11

2. CONTINUOUS OPTIMIZATION 2.2. Global Search Optimization

[32]. In Bayesian search algorithms, techniques for modeling data by Bayesian networks
are developed to estimate the joint distribution of promising solutions. Moreover, enu-
merative methods which, as its name suggests, enumerates all possible solutions. How-
ever, since the domains of the variables are infinite in continuous domains, a set of ap-
proximates of all the possible solution is used. This strategy is applicable to small sized
problems which have a small feasible area.

2.2.2 Meta-heuristic methods

Meta-heuristic methods do not guarantee to obtain the global optimum solution for the
optimization problem. However, the techniques followed by these methods make them
reach a solution which is very close to the local optimum or even the global optimum
itself. Moreover, the meta-heuristic methods are very competitive to the deterministic
methods, because it takes much less time to compute and give very good results. Meta-
heuristic methods are discussed in details in [16].

Local search methods can get stuck in a local minimum, where no improving neigh-
bors are available. A simple modification consists of iterating calls to the local search
routine, each time starting from a different initial configuration. This is called repeated
local search, and implies that the knowledge obtained during the previous local search
phases is not used. Learning implies that the previous history, for example the mem-
ory about the previously found local minima, is mined to produce better starting points
for local search. Iterated Local Search algorithm, described in [29], is based on building
a sequence of locally optimal solutions by perturbing the current local minimum and
applying local search after starting from the modified solution.

Another meta-heuristic method is Simulated Annealing; discussed in [47, 11] which is
a random-search technique which exploits an analogy between the way in which a metal
cools and freezes into a minimum energy crystalline structure (the annealing process),
and the search for a minimum in a more general system. The major advantage over other
methods is an ability to avoid becoming trapped in local minima.

The algorithm employs a random search, which not only accepts changes that de-
crease the objective function, but also some changes that increase it. The latter are ac-
cepted with a probability given by a function of the increase in the objective function and
a control parameter, known as the system ”temperature". The temperature is decreasing
(cooling) slowly according to a predefined schedule, in order to decrease the probability
of accepting worst solutions as exploring the space of solutions.

There is also the Tabu Search method, discussed in [6]. The idea of this popular meta-
heuristic algorithm is to block the search moves to points already visited in the search
space, or just block it for the next k iterates. The main use of the tabu search algorithm
is in discrete optimization problems, but it can also be extended to handle continuous
global optimization problems.

Evolutionary Algorithms (EA) [31] are search methods that take their inspiration from

12

2. CONTINUOUS OPTIMIZATION 2.2. Global Search Optimization

natural selection and survival of the fittest in the biological world. EA differ from more
traditional optimization techniques in that they involve a search from a “population" of
solutions, not from a single point. Each iteration of an EA involves a competitive selec-
tion that weeds out poor solutions. The solutions with high “fitness" are “recombined"
with other solutions by swapping parts of a solution with another. Solutions are also
“mutated" by making a small change to a single element of the solution. Recombination
and mutation are used to generate new solutions that are biased towards regions of the
space for which good solutions have already been seen.

Several different types of evolutionary search methods were developed independently.
These include (a) Genetic Programming (GP), which evolve programs, (b) Evolutionary
Programming (EP), which focus on optimizing continuous functions without recombi-
nation, (c) Evolutionary Strategies (ES), which focus on optimizing continuous functions
with recombination, and (d) Genetic Algorithms (GAs), which focus on optimizing gen-
eral combinatorial problems.

13

3
Constraint Satisfaction over

Continuous Domains

Constraints are the way to specify a relation that must hold between two or more vari-
ables. This is done by restricting the possible values that these variables can have. In
mathematics, constraints are accurately specified relations between variables. A Constraint
Satistfaction Problem (CSP) is a model with variables, such that each variable is ranging
over a domain. Constraints over these variables restrict the respective domain values that
can be assigned to the variables. The aim of any CSP is to give a value for each variable
that does not violate any of the constraints. CSP was introduced in early seventies in [49,
33, 30]. The following definition is the formal definition of a constraint, mentioned in
[8]1:

Definition 3.1. A constraint c is a pair (s, ρ), where s is a tuple ofm variables< x1, x2, . . . , xm >,
the constraint scope, and ρ is a relation of arity m, the constraint relation. The relation ρ
is a subset of the set of all m-tuples of elements from the Cartesian product D1 × D2 ×
· · · ×Dm where Di is the domain of the variable xi:

ρ ⊆ {< d1, d2, . . . , dm > |d1 ∈ D1, d2 ∈ D2, . . . , dm ∈ Dm} (3.1)

The tuples in ρ are the tuples that allow the satisfaction of c. The arity of c is m, which
is the length of the tuples in ρ.

1Most of the definitions mentions in this chapter were also mentioned in this reference

14

3. CONSTRAINT SATISFACTION OVER CONTINUOUS DOMAINS

The constraints in a CSP can be represented explicitly, by stating all the allowed com-
binations of variables’ values of every constraint c in the CSP. They can also be repre-
sented implicitly by means of mathematical expressions or procedures that can be com-
puted in order to determine these combinations.

Definition 3.2. A CSP is a triple P = (X,D,C) where X is a tuple of n variables <
x1, x2, . . . , xn >, D is the Cartesian product of the respective domains D1×D2×· · ·×Dn,
i.e. each variable xi ranges over the domain Di, and C is a finite set of constraints where
the elements of the scope of each constraint are all elements of X .

A solution to a CSP is a tuple of values, each value assigned to a variable, such that it
satisfies all the constraints in C.

Definition 3.3. A solution to the CSP P = (X,D,C) is a tuple d ∈ D that satisfies each
constraint c ∈ C, that is:
d is a solution of P iff2 ∀ci=(si,ρi)∈C d ∈ ρi

A CSP may have one, several, or no solutions. In practice, the modeling of a problem
as a CSP is embedded in a larger decision process. Depending on this decision process
it may be desirable to determine whether a solution exists, meaning that the overall CSP
is consistent. The process might also try to find a solution for the CSP, a set of whole
solutions to the CSP or an optimal solution for an objective function (to turn into an
optimization problem).

Definition 3.4. A CSP, P = (X,D,C) is consistent iff it has at least one solution: P is
consistent iff ∃d ∈ D such that d is a solution of P .

There are several ways to solve a CSP. The main strategy is to use each constraint
separately and try to eliminate values of the variables that guaranteedly can not satisfy
it (and consequently, no valid solution is lost). This is called constraint propagation. This
decreases the search space where the algorithm is looking for a solution. We discuss
constraint propagation more in section 3.2.

Numeric CSP’s, introduced by Davis in [10], are the extension of the CSP to include
variables over continuous domains, since earlier CSPs were only devoted for problems
including variables over finite domains.

Definition 3.5. A NCSP is a CSP P = (X,D,C) where:
i) ∀Di∈DDi ⊆ Z ∨Di ⊆ R
ii) ∀(s,ρ)∈C ρ is defined as a numeric relation between the variables of s.

In NCSP, constraints have to be expressed implicitly, as a numeric relation between
the variables, since the explicit representation of the constraints might be infinite.

Continuous CSPs are a special class of NSCP where the shape of constraints expres-
sion has to be specific. This is the definition of CCSP based on [41].

2if and only if

15

3. CONSTRAINT SATISFACTION OVER CONTINUOUS DOMAINS 3.1. Interval Representation and Analysis

Definition 3.6. CCSP is a CSP, P = (X,D,C) where each domain is an interval of R and
each constraint relation is defined as a numerical equality or inequality:
i) D =< D1, . . . , Dn > where Di is a real interval (1 ≤ i ≤ n).
ii) ∀c∈C c is defined as ec � 0 where ec is a real expression and � ∈ {≤,=,≥}.

In a CCSP, the domains associated with the variables are intervals which are infinite
sets of real numbers. However, to represent infinite sets of real numbers on a computer
system, several techniques were developed. In section 3.1 we talk about how CCSP do-
mains are represented and operations that can be done over them. Afterwards, in section
3.2, we discuss the concept of constraint propagation and the elimination of inconsistent
values. In section 3.3, we discuss popular consistency techniques for CCSPs.

3.1 Interval Representation and Analysis

In order to represent a continuous domain in a computer system, F-numbers were pre-
sented, as defined in several publications [28, 3, 46].

Definition 3.7. Let F be a subset of R containing the real number 0 as well as finitely
many other reals, and two elements (not reals) denoted by −∞,+∞ :
F = r0, . . . , rn ∪ {−∞,+∞} with 0 ∈ {r0, . . . , rn} ⊂ R
The elements of F are called F -numbers.

The elements of F are totally ordered wrt3 R. Moreover, if f is an F-number, then f −

and f + are two F-numbers which are directly before and after f in F wrt the total order.
With the introduction of F-number, F-interval is introduced, which is the subset of

real intervals that can be represented by a particular machine as the set of real intervals
bounded by F-numbers.

Definition 3.8. An F-interval is a real interval ∅ or < a..b > where a and b are F-numbers.
In particular, if b = a or b = a+ then < a..b > is a canonical F-interval.

To express a set of variables’ domains in a CCSP, we use the notion of a box. An F-box
is an extension to the concept of F-interval, with several dimensions.

Definition 3.9. A F-box BF with arity n is the Cartesian product of n F-intervals and is
denoted by < IF1, . . . , IFn > where each IFi is an F-interval:
BF = {< r1, r2, . . . , rm > | r1 ∈ IF1, r2 ∈ IF2, . . . , rn ∈ IFn}.
In particular, if all the F-intervals IFi are canonical, then BF is a canonical F-box.

Interval analysis, introduced in [34], is very important for CCSP in order to be able to
eliminate inconsistent solutions. It is used in many proofs of the soundness of constraint
propagation techniques. Interval analysis is based on interval arithmetic, which is an
extension of real arithmetic for real intervals.

3with respect to

16

3. CONSTRAINT SATISFACTION OVER CONTINUOUS DOMAINS 3.1. Interval Representation and Analysis

Interval arithmetic redefines the basic real arithmetic, like sum, difference, product
and quotient. We define the basic interval arithmetic operators as follows:

Definition 3.10. Let I1 and I2 be two real intervals. The basic arithmetic operations on
intervals are defined by:

I1ΦI2 = {r1Φr2 |1 ∈ I1 ∧ r2 ∈ I2} with Φ ∈ {+,−,×, /}

except that I1/I2 is not defined if 0 ∈ I2. (3.2)

To define the basic operators, let [a..b] and [c..d] be two real intervals. Therefore:

• [a..b] + [c..d] = [a+ c..b+ d]

• [a..b]− [c..d] = [a− d..b− c]

• [a..b]× [c..d] = [min(ac, cd, bc, bd)..max(ac, cd, bc, bd)]

• [a..b/[c..d] = [a..b]× [1/d..1/c] if 0 /∈ [c..d]

Most algebraic properties in the case of real arithmetic, such as commutativity and
associativity hold also in interval arithmetic, However, in distributivity, if we have I1, I2

and I3 intervals then the sub-distributivity law becomes:

I1 × (I2 + I3) ⊆ I1 × I2 + I1 × I3 (3.3)

According to [34], interval analysis and evaluations are sound and correct. This
soundness is one of the major contributions to the interval constraints framework. Since
a function can be expressed in different equivalent expressions, interval evaluations of
these expressions may yield different interval results. However, the soundness of inter-
val arithmetic guarantees that all the output intervals contain the intended results for the
function. We show the formal definition of interval expressions and the representation of
interval function next.

Definition 3.11. An expression E is an inductive structure defined in the following way:
(i) a constant is an expression;
(ii) a variable is an expression;
(iii) ifE1, . . . , Em are expressions and φ is am-ary basic operator then φ(E1, . . . , Em) is an
expression; a real expression is an expression with real constants, real-valued variables
and real operators. An interval expression is an expression with real interval constants,
real interval valued variables and interval operators.

An interval constraint is represented by an interval expression. There are many algo-
rithms and techniques for interval analysis. This is described more in detail in [34].

17

3. CONSTRAINT SATISFACTION OVER CONTINUOUS DOMAINS 3.2. Constraint Propagation

3.2 Constraint Propagation

In a CCSP P = (X,C,D), the initial domains of variables in X are infinite sets, since they
are real intervals. The whole domain of the problem obtained by the power set of D is
also infinite. Therefore, solving a CCSP is theoretically over infinite space. However, due
to the computer’s limitation to represent real numbers, approximation using F-numbers
is used. The search starts considering the smallest F-box enclosing D. Then a pruning
step starts, which tries to remove inconsistent options from the box. Which results in
returning a new F-box or a union of F-boxes.

The pruning step consists of reducing an F-box (or a union of F-boxes) A to a smaller
F-box (or a union of F-boxes)A′. The pruning algorithm must make sure that there are no
potential solutions removed from the original box. Nonetheless, the filtering algorithm
may be unable to prune some inconsistencies due to the limited representation power.

The branching step comes after pruning, which consists of dividing the pruned F-
box into m smaller F-boxes, such that, the union of the m F-boxes must be the same as
the original F-box. Then afterwards pruning is applied to the divided boxes, trying to
remove further options which are not solutions.

The technique described before is called branch and prune. For the sake of simplifi-
cation of the domain’s representation, most solving strategies impose that only the single
F-boxes should be presented (as opposed to a union of F-boxes). In that sense, prun-
ing corresponds to narrowing the original F-box into a smaller one, where the lengths of
some F-intervals are decreased by some filtering algorithms (or if it became empty, prov-
ing the original F-box to be inconsistent). The branching step usually consists of splitting
the original F-box into two smaller F-boxes by splitting one of the original variable do-
mains around an F-number, which is in most algorithms the F-number representing the
mid-value of the F-interval of its domain.

The filtering algorithms are used for pruning the variable domains. They are based
on constraint propagation techniques. The propagation process is described as a succes-
sive pruning to the variables domains’. This is done by applying narrowing functions
associated to the constraints of the CCSP. Evaluation of the narrowing functions is done
by algorithms that take advantage of the techniques of interval analysis.

In the propagation algorithm, a narrowing function is the mapping between elements
in a domain: A, and A′, such that the new elements in A′ are obtained by eliminating
some value from A. In the following, the definition of the narrowing function is shown.

Definition 3.12. Let P = (X,D,C) be a CCSP. A narrowing functionNF associated with
a constraint c = (s, ρ) (with c ∈ C) is a mapping between elements of 2D (DomainNF ⊆
2D and CodomainNF ⊆ 2D) with the following properties (where A is any element of
DomainNF):
P1) NF (A) ⊆ A (contractance)
P2) ∀d∈A d 6∈ NF (A)→ d[s] 6∈ ρ (correctness)

18

3. CONSTRAINT SATISFACTION OVER CONTINUOUS DOMAINS 3.2. Constraint Propagation

From property P1, it is assured that the new domain NF (A) is smaller than A. More-
over, with property P2, the narrowing function does not remove any valid solution for
the CCSP.

A narrowing function has to be monotonic and idempotent according to [38] or at
least monotonic according to [4].

Definition 3.13. Let P = (X,D,C) be a CCSP. Let NF be a narrowing function asso-
ciated with a constraint C. Let A1 and A2 be any two elements of DomainNF . NF is
respectively monotonic and idempotent iff the following properties hold:
P3) A1 ⊆ A2→ NF (A1) ⊆ NF (A2) (monotonicity)
P4) NF (NF (A1)) = NF (A1) (idempotency)

Input: set Q of narrowing functions, a box B ⊆ D
Output: a box B

′ ⊆ B
1 function prune(Q,B)
2 S ← ∅;
3 while Q 6= ∅ do
4 choose NF ∈ Q ;
5 B′ ← NF (B);
6 if B′ = ∅ then
7 return ∅ ;
8 end
9 P ← {NF ′ ∈ S : ∃x∈RelevantNF ′B[x] 6= B′[x]};

10 Q← Q ∪ P ;
11 S ← S\P ;
12 if B′ = B then
13 Q← Q\{NF};
14 S ← S ∪ {NF};
15 end
16 B ← B′;
17 end
18 return B;

FIGURE 3.1: Standard propagation algorithm

The standard propagation algorithm in figure 3.1 takes two arguments: Q, which is
the set of all narrowing functions associated with the constraints in the CCSP, and B,
which is a subset of the power-set of the domains of the CCSP.

In the beginning of the algorithm, the set S is initialized to the empty set. S contains
the narrowing functions for which B is necessarily a fixed-point. Then, until Q is not
empty, it starts applying the narrowing functions in Q by selecting a narrowing function
NF , and applying it to B to get B′. Then it checks: if the domain of B′ is empty, then
there is no solution for the problem returning an empty set.

However, if B′ is not empty, the set P is defined as a subset of S composed of all the
elements of S for which B′ is no longer guaranteed to be a fixed-point. These elements,

19

3. CONSTRAINT SATISFACTION OVER CONTINUOUS DOMAINS 3.2. Constraint Propagation

which are the narrowing functions with relevant variables whose domains were changed
by applyingNF toB, are moved from S toQ to be applied again onB. Moreover, ifB′ is
a fixed point for B; meaning B = B′, then NF is moved to S. Then finally B is updated
with the values in B′ and the loop repeats again.

Many types of narrowing functions have been developed that follows the monotonic-
ity and idempotency rules. There are many techniques to associate narrowing functions
to the constraints of a CCSP.

One important technique is the constraint decomposition method [24, 44], mentioned in
[8]. It is based on the transformation of complex constraints into an equivalent set of
primitive constraints that can be solved with respect to each variable.

First we decompose the set of original constraints into a set of primitive constraints
possibly by adding new variables. For example, the complex constraint (x2−x1)2×x1 = 1

is decomposed into the primitive constraints: {x3 = x2 − x1, x4 = x3, x4 × x1 = 1} with
the addition of the two new variables x3 and x4.

The next step of the constraint decomposition method is to solve algebraically each
primitive constraint wrt. each variable in the scope and to define an interval function en-
closing the respective projection function. This is always possible because the constraints
are primitive. However, an extra care must be taken due to the in-definition of some real
expressions for particular real-valued combinations.

For example the primitive constraint x3 = x2 − x1 yeilds the following narrowing
functions for reducing the domains of each variable:

• NF1(I1)→ (I2 − I3) ∩ I1.

• NF2(I2)→ (I3 + I1) ∩ I2.

• NF3(I3)→ (I2 − I1) ∩ I3.

There are several other narrowing functions like the Newton Method [3], and several
modifications to the decomposition methods [24] and the Newton methods [46].

Despite being a finite search space, the domains of a CCSP usually contain a huge
number of elements, and any strategy to navigate over it must be aware that the under-
lying real-valued search space is infinite. To be effective, a solving strategy cannot rely
exclusively on branching, expecting the splitting process to stop eventually because the
search space is finite. In fact, the splitting process is theoretically guaranteed to stop but
the combinatorial number of necessary splits usually prevents such stopping from being
achieved in a reasonable amount of time. One approach often adopted imposes condi-
tions on the branching process, for instance, branching may only be performed on lattice
elements with some variable domains larger than a predefined threshold, and this may
only be done by splitting one of these domains.

20

3. CONSTRAINT SATISFACTION OVER CONTINUOUS DOMAINS 3.3. Consistency Techniques

3.3 Consistency Techniques

The fixed-points of a set of narrowing functions associated with a constraint c character-
ize a local property enforced among the variables x1, x2, . . . , xn of the constraint scope.
Such property is called local consistency. It mainly depends on these narrowing functions
which are associated with only one constraint. Moreover, it defines the value combina-
tions that are not removed from the variables. Local consistency is a partial consistency,
which means that when it is imposed on a CCSP problem, it does not remove all the
inconsistent combinations between its variables.

The local consistencies that are in use for the CCSP is a modification of the arc-
consistency which is a local consistency mainly used for CSP over finite domains and was
introduced in [30]. Arc-consistent constraints are the constraints for which each value in
the variables involved in the constraint has a consistent value with the other variables’
values of the constraints. The definition of arc-consistency is as follows.

Definition 3.14. Let P = (X,D,C) be a CSP. Let c = (s, ρ) be a constraint of the CSP .
Let A be an element of the power set of D (A ∈ 2D). The constraint c is arc-consistent wrt
A iff:
∀xi∈s ∀di∈A[xi] ∃d∈A[s] (d[xi] = di ∧ d ∈ ρ)

Arc consistency can not be enforced with CCSP since the domains of the variables
in the problem are infinite, and the machine has a memory limitation. Therefore, the
real values are approximated into canonical F-interval. The best approximation of arc-
consistency wrt a set of real-valued combinations is the set approximation of each vari-
able domain.

This is the idea of the interval-consistency [24, 44]. A constraint is interval-consistent
wrt a set of value combinations iff for each canonical F-interval representing a variable
sub-domain there is a value combination satisfying the constraint. Interval-consistency
has the following formal definition.

Definition 3.15. Let P = (X,D,C) be a CCSP. Let c = (s, ρ) be a constraint of the CCSP
(c ∈ C). Let A be an element of the power set of D (A ∈ 2D). The constraint c is interval-
consistent wrt A iff: ∀xi∈s ∀[a..a+]⊆A[xi] ∃d∈A[s] (d[xi] ∈ (a..a+) ∧ d ∈ ρ)

∧ ∀[a]⊆A[xi] ∃d ∈ A[s] (d[xi] ∈ (a−..a+) ∧ d ∈ ρ) (where a is an F-number).

Interval-consistency can only be enforced on primitive constraints where the set ap-
proximation of the projection function can be obtained using interval arithmetic. More-
over, according to [24], in practice, the enforcement of interval-consistency can be applied
only to small problems.

Several other kinds of local consistencies were developed. For example, the Hull-
consistency [28], and the Box-consistency [3] that are variants of arc-consistency enforced
only on the bounds of each variable.

In addition to local consistency, Higher Order Consistency provides better pruning to
the variable domains. The main idea of higher order consistency is to have some global

21

3. CONSTRAINT SATISFACTION OVER CONTINUOUS DOMAINS 3.3. Consistency Techniques

view on a subset of the constraints in the CCSP or the even the whole setC. Several higher
order consistency algorithms were introduced, including 3B-consistency [28], Bound con-
sistency [40], and KB-consistency [28].

22

4
Hybrid Local Search Constraint

Optimization Algorithms

After introducing continuous optimization in chapter 2 and continuous constraint sat-
isfaction in chapter 3, we introduce our main work, in which we combine techniques
of continuous optimization problems, whether constrained or unconstrained, with the
branch-and-bound algorithms of CCSP.

In recent years, there has been a lot of research done in the field of hybrid constraint
programming and hybrid constraints with local search [43]. This research is focusing
mainly on constraints over finite domains [13]. There are many frameworks developed
for constraint programming with the option of using local search techniques to satisfy
the problem. One of the most famous frameworks which is mainly developed for CSP
over finite domains is Comet [20].

In this thesis, we discuss the combination of branch-and-bound technique that is used
to propagate constraints and solve CCSP, with continuous local search over the branched
and pruned boxes of the CCSP. When solving an optimization problem, trying to get the
global minimum, constraint propagation techniques are used to prune the domains of
the variables in the problem after branching the search space into several boxes. We use
continuous local search techniques over every box, trying to get a local minimum within
that box. By comparing the results obtained for the local minima of each box, we can
keep track of the minimal “local minimum”, which is the local minimum which has the
lowest value found. Therefore, we get an estimate of the global minimum of the problem
over the search space explored.

Figure 4.1 describes the general algorithm used for the local search with CCSP. The

23

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS

algorithm takes a CCSP with an optimization function f . In other words, it takes a con-
strained optimization problem with the function f that will be minimized, and a set C of
constraints that are transformed into the form of constraints, appearing in the standard
optimization problem in equation 2.1.

In line 1, B is a set of boxes which is initialized with the initial box for the branch
and prune algorithm. Afterwards, in lines 2 and 3 we initialize the variables where the
minimal objective function value and the minimal local point found will be stored.1 A
loop starts in line 4 until B is empty. In line 5, a box b is selected from B according
to a selection criterion. This criterion selects b with the highest potential of finding a
better local minimum. Branching is applied on the selected box b, creating a set of boxes
{b1, . . . , bn}. Then another loop starts for every box bi , starting by pruning the box bi in
line 8.

Input: A continuous optimization Problem P with the function f (which can also
be a CCSP with an objective function)

Output: a point x, the global minimum found so far.

1 B ← {(Initial box b)};
2 minimalPoint← NULL;
3 minimalV alue←∞;
4 while B is not empty do
5 b← B.takeBox();
6 {b1, . . . , bn} = b.branch();;
7 foreach bi ∈ {b1, . . . , bn} do
8 bi.prune();
9 if bi is not empty then

10 <succeed, point>← applyLocalSearch(bi);
11 if succeed == true then
12 value← f (point);
13 if boxV alue < minimalV alue then
14 minimalV alue← value;
15 minimalPoint← point;
16 end
17 end
18 if stopping criteria reached then
19 return minimalPoint;
20 end
21 add bi to B ;
22 end
23 end
24 end
25 return minimalPoint;

FIGURE 4.1: Pseudo code of the general CCSP-LS hybrid technique

Afterwards, an emptiness check is applied on bi in line 9. If bi is not empty, the local
1MinimalPoint and MinimalV alue are global variables that can be accessed from any function.

24

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.1. Procure, a quick introduction

search optimization will be applied within the box, taking into consideration that some
of the local search algorithms we discuss will always maintain the bounds of the box.
Others have the option of trying to get an even better optimal point by going out of the
bounds of the box bi.

The applyLocalSearch(bi) algorithm returns the pair <succeed, point>. The first
parameter in the pair is a boolean variable which is true if the algorithm succeeded to
find a local minimum in the bi, and false otherwise. If succeed is true, then the box local
minimum is saved in point, and its objective function value is calculated and saved in
value. Then the value is checked if it has the minimal value of f so far. If that is the case,
minimalV alue and minimalPont are updated as it is shown in lines 14 and 15.

At the end of every iteration, a stopping criterion is checked. Many criteria can be
used, such as the difference between the lower bound of the objective function interval
evaluated by interval arithmetics to the minimaV alue. If the stopping criteria is not
reached, bi is added to B.

We will use Procure [42], which is a probabilistic continuous domain constraint frame-
work, for the implementation for our algorithms and obtaining the results. We will dis-
cuss in brief how Procure works in section 4.1.

In section 4.2, we implemented a random search algorithm for the sake of comparison
with the local search algorithms. In later sections, sec. 4.3 and 4.4, we will discuss two
local search algorithms we implemented with the logic that supports it. These two algo-
rithms depend on the concept of the steepest descent local search. However, they have
different step length calculation and penalty functions.

4.1 Procure, a quick introduction

All the algorithms we propose and investigate in this work are implemented using Pro-
cure. Procure is a probabilistic continuous domain constraint framework which is built
over RealPaver[18], which is an interval-based solver. Procure is developed by the Cen-
tria group at the new University of Lisbon. Using the C++ programming language and
following an object oriented design, this solver provides a set of useful continuous con-
straint methods, and its design makes it easily extensible.

Procure provides many mathematical methods for calculation, such as calculating the
derivative of a function and partial derivatives. It uses branch-and-bound algorithms for
constraint propagation. Moreover, with the modularity provided with it, the simplicity
of changing the search algorithm within the branched boxes comes in handy.

It implements the general CCSP-LS algorithm that was shown in figure 4.1. However,
it does not use the local search algorithm over every processed (branched and pruned)
box. What it simply does, is that it takes the mid-points over all intervals of the variables
in the branched box and return them as the point.

In the Procure implementation, B is an ordered set of boxes with respect to the box
lower Bound of the objective function f . Procure uses interval arithmetic to calculate an

25

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.1. Procure, a quick introduction

1 vector<Procure::Var> x(1);
2 Problem prob(x,{{-3,20}},{x[0] >= 0 },20 + x[0] * sin(x[0]));

FIGURE 4.2: Example 1, simple optimization problem

interval disclosure of f for each box in B and maintain the ordering of B ascendingly with
respect to the boxes’ lower bounds.

Moreover, when a problem is passed to Procure to find the global minimum, an im-
plicit constraint cobj , shown in equation 4.1, is added to the set of constraints C of the
optimization problem. cobj makes sure that the new local minimum found by the algo-
rithm is having a lower objective value than the current local minimum. cobj also helps
in pruning the set of boxes B. From this set we remove the boxes that do not have any
potential of finding the global minimum, meaning the boxes having a lower bound with
a higher value than the local minimum found so far. Assume the set B has the boxes
b1, . . . , bn. cobj imposes that the objective function value of the lower bound (LB) of bi is
less than or equal to the objective function value of the minimal point (minimalV alue).
cobj is updated whenever the minimalV alue is changed.

cobj = f (x) ≤ minimalV alue. (4.1)

In order to solve an optimization problem, in addition to the optimization function
f , we specify the variables X , the initial domains D and the constraints C. Figure 4.2
shows an example of an optimization function which is written in Procure syntax. This
example will be used throughout this chapter to make comparisons with different search
algorithms.

Figure 4.2 shows an optimization problem with one variable x[0], for simplicity, let’s
call it x. x has the initial domain of [−3, 20] with one constraint in the system, that is x ≥ 0.
The optimization function is 20 + x× sin(x), that we want to minimize. In figure 4.3, the
minimization function is presented. There are four local minima in the feasible area of
the problem:

• x = 0 with f (x) = 20.

• x ≈ 4.99 with f (x) = 15.185.

• x ≈ 11.0855 with f (x) = 8.95929.

• x ≈ 17.3364 with f (x) = 2.6924, which is also the global minimum.

Solving this optimization problem with Procure’s mid-point function needed to use
the branch and prune algorithms 4 times to obtain 4 pruned boxes. The final result for
the minimal point found is at 2.692. The time taken for the algorithm is 0.07 second.
This is due to the simplicity of the objective function. In the next chapter, we will see the
impact of local search on a bigger scale example.

26

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.2. Random Local Search

0

5

10

15

20

25

30

35

40

0 5 10 15 20

f (x)

x

20 + x sin(x)

FIGURE 4.3: Plot of Procure example

4.2 Random Local Search

In this local search algorithm, we use a completely random selection algorithm for obtain-
ing a point x from a box b. Simply by taking the current box b as an input, we randomly
choose x, and then check whether it is in the feasible area of the problem. If x is feasible,
the search terminates, and x is returned. On the other hand, if this is not the case, then a
new random point is obtained. This process will continue until the maximum number of
restarts is reached. If the restarts number is reached, then the algorithm fails to find any
feasible point in its random search and terminates.

The local search algorithm which appears in figure 4.4 does what is mentioned earlier,
and it returns the pair <succeed, point>. If the algorithm succeeded to find a feasible
point x, then succeed is set to true and the point takes the obtained point. Otherwise, it
returns <false,NULL>.

With the random local search, the time of solving an optimization problem is varied
over a long time. Therefore, when we get to test this algorithm, we take an average of
five runs of the problem and get the average timing.

In the problem that appeared in figure 4.2. We ran the problem five times using the
local search algorithm. It took an average of 0.07 seconds which is the same time of
the mid-point algorithm. Most of the search space is in the feasible area. This results
in most of the selected random points being feasible. This allows the branching to go
faster, removing all the boxes that do not satisfy the global constraint cobj . Moreover, the
number of boxes branched and checked are on average 13 boxes, which is considered to
be many compared to the simplicity of the optimization problem.

27

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.3. Armijo Rule with Quadratic Penalty

Steepest Descent

Input: a box b
Output: A pair <Bool, Point>

1 restarts← 50;
2 for i← 1 to restarts do
3 x← random point in b;
4 if x is feasible then
5 return <true,x>;
6 end
7 end
8 return (false,NULL);

FIGURE 4.4: Random Local Search algorithm

4.3 Armijo Rule with Quadratic Penalty Steepest Descent

In this local search algorithm, we use the steepest descent method for obtaining a new
point xk+1 from xk. Steepest descent algorithm is mentioned in section 2.9.

There are two main options for implementing this algorithm: how to represent the
constraints and how to select the step length. Constraints are presented in the problem
using the quadratic penalty method. In other words, the count of the penalty caused by
violating the constraints in the system is added to the value of the overall objective func-
tion. This is done by changing the objective function f to Q , where Q takes into account
the number and amount of violations in every constraint. The technique of quadratic
penalty function is discussed in 2.1.2, equation 2.14.

The selection of the step length αk with respect to the direction dx is determined by the
Armijo rule, as shown in equation 2.8. The algorithm’s stopping criteria mainly depends
on the iterative settings of the algorithm. A counter is set to a number m, then by the end
of every iteration the boolean value Q(xk+1) ≥ Q(xk) is checked. The counter decreases
whenever this check is true, and resets when it is false. If for m consecutive iterations the
check succeeded, the algorithm terminates, returning xk.

The main idea of this algorithm is that when the violated constraints are added as a
penalty in the original objective function f to obtain Q , then using the steepest descent in
the decreasing direction of Q , the penalty value of xk+1 is going to be less than that of xk.

Figure 4.5 shows the algorithm with the stopping counter stops mentioned earlier.
The input is a box b with a vector x of n variables. The algorithm tries to obtain a local
minimum inside b with respect to the newly obtained objective function Q . It returns a
pair <succeed, point>. succeed is true if the algorithm found a local minimum, and it sets
point to this local minimum point. It returns false if it did not succeed in finding a local
minimum.

The algorithm starts by setting the restarts number, which in this case is 50. Then with
every restart, xk is set to be a random point in b. A stopping flag which is set to 5 acts as
a stopping criteria when the local search starts. In case it could not find a better point in

28

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.3. Armijo Rule with Quadratic Penalty

Steepest Descent

the next five runs, the search stops. The variable µ is set to 1.
Afterwards, in every iteration of the local search, a new objective function Q is cal-

culated using the function getQuadPenaltyFunction(f ,xk,µ) which will be discussed
later. In addition to calculating Q , the step ratios are calculated for every variable in b.
This is done using the function getArmijoSteps(Q ,xk) that returns an array of ratios;
a ratio for each variable.

Input: a box b
Output: A pair <Bool, Point>
Result: Getting a local minimum in a box b

1 restarts← 50;
2 for i← 1 to restarts do
3 xk ← random point in b;
4 stop← 5;
5 µ← 1;
6 while stop ≥ 0 do
7 Q ← getQuadPenaltyFunction(f ,xk,µ) ;
8 Steps← getArmijoSteps(Q ,xk) ;
9 for j ← 1 to n do /*n is number of variables in xk*/

10 x(k+1).j ← xk.j − Steps[j]×∇Qj ;
11 end
12 Q

′ ← getQuadPenaltyFunction(f ,xk+1,µ) ;
13 if Q

′
(xk+1) ≤ Q(xk) then

14 \ ∗Modification Here ∗ \
15 xk ← xk+1;
16 stop← 5;
17 µ← 1;
18 else
19 stop← stop− 1;
20 µ← µ× 2;
21 end
22 end
23 if xk is feasible then
24 return <true,xk>;
25 end
26 end
27 return <false,NULL>;

FIGURE 4.5: Steepest Descent with Quad. Penalty and Armijo

In line 9, a loop starts over the variables in xk. The new value of each variable in
x(k+1).j is obtained by subtracting the corresponding ratio of the variable steps[j] multi-
plied by the partial derivative of the new function Q with respect to the same variable,
from the old value xk.j .

A new objective function Q
′

is obtained in line 12. It is the penalty objective function
which corresponds to the new point xk+1. Note that the number of violated constraints

29

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.3. Armijo Rule with Quadratic Penalty

Steepest Descent

might change, especially concerning the constraints of the form c ≤ 0.
Afterwards in line 13, we check if Q

′
(xk+1) ≤ Q(xk) holds in order to update the

value of xk to be xk+1 and reset the stop counter and µ. However, if this condition is not
satisfied, the algorithm will be rerun, but after multiplying µ by 2, the decrease of weight
of the penalties in the newly calculated Q . This increases the potential of xk+1 to have
lower Q in the next iteration. Moreover, the stop counter is decreased. The comment in
line 14 will be discussed later.

Furthermore, at the end of every restart, a check for feasibility is done over the ob-
tained final xk, if it is feasible, then it is a valid local minimum, and the algorithm returns
the pair (true,xk). If it is not, another restart loop commences.

µ is the variable controlling the weight of the penalties in the obtained objective func-
tion Q. The function getQuadPenaltyFunction is called on every iteration in order to
mainly update the ci ≤ 0 constraints, so if they are less than or equal to zero, we do not
add them in order to maintain the equation 2.14, specifically the part of

∑i=m
i=k+1 max(ci(x), 0)2.

The getQuadPenaltyFunction is in figure 4.6. The algorithm is direct, as it per-
forms exactly what the quadratic penalty equation presents. It calculates the new func-
tion Q from f by adding all the terms 1

2µc
2(x) to f in case of c being an equality constraint.

However, for inequality constraints, it first checks if the constraint is violated in order to
add the term representing this constraint; 1

2µc
2(x). If it is not violated by xk, then it is not

added to Q .

Input: Objective Function f , a point x, a scalar value µ
Output: Quadratic penalty Objective function Q

1 Function getQuadPenaltyFunction(f , x, µ)
2 Q ← f ;
3 foreach constraint c ∈ C do
4 if type of c equals “ci = 0” then
5 Q ← Q + 1

2µc
2(x) ;

6 end
7 if type of c equals “ci ≤ 0” and c(x) > 0 then
8 Q ← Q + 1

2µc
2(x) ;

9 end
10 end
11 return Q ;

FIGURE 4.6: Quadratic Penalty objective function algorithm

Then for selecting the step length in every iteration, we call getArmijoSteps. More-
over, we take a step for every variable in b, so for every variable we have its specific step
length.

The function getArmijoSteps(f , xk) of figure 4.7 starts by setting the two main
variables ρ and c to 0.7 and 10−4, respectively. These values are set according to [50], as
these are the best values known in practice for these two variables. The main intuition

30

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.3. Armijo Rule with Quadratic Penalty

Steepest Descent

of the Armijo function is to backtrack the value of α starting from 1, until it reaches an
acceptable area. An acceptable area is an area which the Armijo inequality equation 2.8
is satisfied. When the Armijo condition is satisfied, it guarantees an acceptable decrease
in Q(xk+1).

The algorithm retries a smaller value of step α over each iteration until the Armijo
condition is satisfied. The algorithm does that for each variable in the point vector x. It
returns an array of steps, one step for each variable.

Input: An objective function f , a point vector x
Output: Quadratic penalty Objective function Q

1 Function getArmijoSteps(f , x)
2 ρ← 0.7 ;
3 c1 ← 0.0001 ;
4 Ratios← new array of the size of x;
5 for k = 0; k ≤ x.size ; k++ do
6 αk ← 1;
7 repeat
8 value1← f (x− αk∇fk) ;
9 value2← f (x) + c1αk∇f ᵀk ∇fk ;

10 αk ← αk × ρ;
11 until value1 ≤ value2;
12 Ratios[k]← αk/ρ;
13 end
14 return Ratios ;

FIGURE 4.7: Armijo rule line search algorithm

We discuss how this local search algorithm works over the example given in figure
4.2. It starts by choosing xk randomly, then iterates over it, obtaining better values for the
penalty function Q at every iteration. In table 4.8, the results for the iterates are shown,
showing the iteration number, the start point of the iteration (xk), the quadratic function
Q , the step ratio α, the value Q(xk), the obtained xk+1, Q

′
(xk+1), and finally the check if

Q
′
(xk+1) < Q(xk) are shown.
The value of Q decreases over iterating, converging into the nearest local minimum

from the starting point. In the first iteration, xk is set to be 10.76, which does not violate
the single constraint in the system x ≥ 0, having Q(xk) = 9.51858. By applying the
steepest descent for x, which in this case equals (10.76) − 0.16807((10.76)cos((10.76)) +

sin((10.76))) = 11.3418 = xk+1. It has also a better value for the objective function
Q
′
(xk+1) = 9.33135.
The objective function value converges slowly as the algorithm iterates more into the

closest local minimum of the box, which is in this case xk = 11.0856 with f (xk) = 8.96.
After the tenth iteration, the convergence to the local minimum becomes slower such that
it requires 138 iterations to finally reach the optimal value of the local minimum with
almost unnoticeable change. In practice, this is a huge number of unneeded iterations to

31

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.3. Armijo Rule with Quadratic Penalty

Steepest Descent

It xk Q α Q(xk) xk+1 Q
′
(xk+1) < ?

1 10.7654 20 + x ∗ sin(x) 0.16807 9.51858 11.3418 9.33135 t
2 11.3418 20 + x ∗ sin(x) 0.16807 9.33135 10.853 9.25717 t
3 10.853 20 + x ∗ sin(x) 0.16807 9.25717 11.2786 9.17004 t
4 11.2786 20 + x ∗ sin(x) 0.16807 9.17004 10.9106 9.12867 t
5 10.9106 20 + x ∗ sin(x) 0.16807 9.12867 11.2337 9.08322 t
6 11.2337 20 + x ∗ sin(x) 0.16807 9.08322 10.9517 9.05882 t
7 10.9517 20 + x ∗ sin(x) 0.16807 9.05882 11.2003 9.03364 t
8 11.2003 20 + x ∗ sin(x) 0.16807 9.03364 10.9821 9.01886 t
9 10.9821 20 + x ∗ sin(x) 0.16807 9.01886 11.175 9.00439 t
10 11.175 20 + x ∗ sin(x) 0.16807 9.00439 11.0052 8.99532 t
20 11.112 20 + x ∗ sin(x) 0.16807 8.96321 11.062 8.96239 t
30 11.0934 20 + x ∗ sin(x) 0.16807 8.95964 11.0786 8.95956 t
40 11.0879 20 + x ∗ sin(x) 0.16807 8.95932 11.0835 8.95932 t
50 11.0862 20 + x ∗ sin(x) 0.16807 8.95929 11.0849 8.95929 t
60 11.0857 20 + x ∗ sin(x) 0.16807 8.95929 11.0854 8.95929 t
70 11.0856 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 t
80 11.0856 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 t
90 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 t
100 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 t
110 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 t
120 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 t
133 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 t
134 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 f
135 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 f
136 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 f
137 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 f
138 11.0855 20 + x ∗ sin(x) 0.16807 8.95929 11.0855 8.95929 f

FIGURE 4.8: Steepest Descent with Quad. Penalty and Armijo steps Iterations for one
box

reach the optimal local minimum.
Therefore, it took almost 0.7 seconds to solve this problem, due to the very small ratio

of convergence to the local minimum. This is the main reason we introduce the Modified
Armijo Rule with Quadratic Penalty Steepest Descent algorithm. The modification, which
we show in 4.9, is inserted into the algorithm; figure 4.5, instead of line 14 in figure 4.5.

What that change does is that instead of resetting the stop variable to 5 iterations, it
decrements it by 1 if the new value Q

′
(xk+1) is 95% close to the old value Q(xk) or more.

By using this new technique, the chances of eliminating unneeded iterations with very
small convergence rate increases.

Table 4.10 supports this claim. This eliminates a huge amount of unneeded iteration
in practice. We use the same box, with the same start point. The algorithm stops after
only five iterations, giving a close result to the original algorithm.

Using the modified version of the Armijo Rule with Quadratic Penalty Steepest De-
scent algorithm enhanced the execution time dramatically, giving 0.03 seconds to solve

32

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.3. Armijo Rule with Quadratic Penalty

Steepest Descent

1 if Q
′
(xk+1)/Q(xk) ≥ 0.95 then

2 xk ← xk+1;
3 stop← stop− 1;
4 µ← 1;
5 Continue;
6 end

FIGURE 4.9: Modification of Steepest Descent with Quad. Penalty and Armijo

It xk Q α Q(xk) xk+1 Q
′
(xk+1) < ?

1 10.7654 20 + x ∗ sin(x) 0.16807 9.51852 11.3418 9.33132 t
2 11.3418 20 + x ∗ sin(x) 0.16807 9.33132 10.853 9.25714 t
3 10.853 20 + x ∗ sin(x) 0.16807 9.25714 11.2786 9.17002 t
4 11.2786 20 + x ∗ sin(x) 0.16807 9.17002 10.9107 9.12866 t
5 10.9107 20 + x ∗ sin(x) 0.16807 9.12866 11.2337 9.08321 t

FIGURE 4.10: Modified Steepest Descent with Quad. Penalty and Armijo steps iterations
for one box

this problem, instead of 0.7 seconds.
To show an example of the penalty function in action, in table 4.11, we choose the

starting point xk in the box from [−3, 1] to be −1, such that it violates the constraint
x ≥ 0, the penalty function is applied and the algorithm converges xk to the feasible area,
obtaining a feasible solution which is close to the local minimum of this box: x = 0.

In conclusion, the Armijo Rule with Quadratic Penalty Steepest Descent algorithm
converges very rapidly in the beginning for the nearest local minimum in the box b. It
depends on the quadratic penalty function, which adds the penalties of the violated con-
straints into the overall value of the objective function. In some cases, if the violations
are too many, it might need a longer time to converge into a feasible area. Moreover, the
calculation of the step function α is accurate as it almost guarantees a decrease in the ob-
jective function. However, the cost of reaching α is high as it might take several iterations
to obtain it.

It xk Q α Q(xk) xk+1 Q
′
(xk+1) < ?

1 -1 20+x∗sin(x)+
0.5 ∗ x2 ∗ µ−1

0.343 22.8415 0.845948 20.6333 t

2 0.845948 20 + x ∗ sin(x) 1 20.6333 −0.463534 20.637 f
3 0.845948 20 + x ∗ sin(x) 1 20.6333 −0.463534 20.4221 t
4 -0.463534 20+x∗sin(x)+

0.5 ∗ x2 ∗ µ−1
0.2401 20.637 0.188546 20.0353 t

5 0.188546 20 + x ∗ sin(x) 1 20.0353 −0.18409 20.1015 f
6 0.188546 20 + x ∗ sin(x) 1 20.0353 −0.18409 20.0676 f

FIGURE 4.11: Modified Steepest Descent with Quad. Penalty and Armijo steps Iterations
with constraints violations

33

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.4. Box Ratio with Separate Penalty

Steepest Descent

The algorithm takes a box b as an input. However, it is not bound to that box when
it searches for a feasible local minimum. Therefore, in this case, the points inside b act as
potential starting points for the random assignment. The final solution might be a point
from outside the box, but inside the overall domain D of the variables2 .

4.4 Box Ratio with Separate Penalty Steepest Descent

In this section, we discuss another local search algorithm, which is also based on the
steepest descent algorithm. However, it differs in handling the constraints in the CCSP.
Moreover, the calculation of the step length depends on the box size.

The box ratio with separate penalty steepest descent algorithm presents only violated
constraints by using the decreasing direction of the violated constraints gradient. There-
fore, with a modification to the steepest descent equation 2.9, we get a steepest descent
equation that accounts for the constraint’s gradient. The new steepest descent equation
is as follows:

f (xk+1) = f (xk)− rαk∇fk −
v(C,xk).size∑

i=0

(1-r)αk∇v(C, xk)i (4.2)

v(C, xk) is a function that takes the set of constraints C and a point xk and returns an
array of the violated constraints in C with respect to xk. 0 ≤ r ≤ 1 is a weight constant
that divides the weights of the effect of the gradient of the objective function f or the
violated constraints v(c, xk). ∇v(C, xk)i is the gradient of the constraint in position i of
the array v(C, xk).

Moreover, the ratio α is depending on the width of the box b and the direction of the
gradient∇f .

Definition 4.1. A box ratio is the ratio between the distance of a variable x and the lower
bound of the box b with respect to x; bx, to the width of bx in case ∇f (x) > 0, or the
distance between x and the upper bound of b in case ∇f (x) < 0. It is 0 otherwise, since
∇fx = 0 means that x is an optima.

boxRatio(f , x, b) =


x−bx.lb

bx.ub−bx.lb ∇f (x) > 0
bx.ub−x

bx.ub−bx.lb ∇f (x) < 0

0, otherwise

(4.3)

bx.lb and bx.ub are the lower bound and the upper bound of bx respectively. Box ratio
is a greedy step length calculation as it calculates the distance needed to reach the bound
of the box from the point x. Then box ratio is used to determine several steps on the
gradient of f .

The stopping criteria of the algorithm depends on the step lengths taken by the line
search algorithm which is this case the box ratio algorithm. A counter is set to a number

2The algorithm is implemented such that it does not allow the variables’ value to be outside the domain

34

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.4. Box Ratio with Separate Penalty

Steepest Descent

m, by the end of every iteration xk+1 is checked if it is better than xk according to figure
4.14, that is discussed later. If it is not the case, then m is decremented and the algorithm
terminates when the counter reaches 0.

The main idea in this algorithm is to separate the penalty calculation from the objec-
tive function f and to use a step length that depends on the length of the box.

In figure 4.12, we show the algorithm of box ratio with separate penalty steepest de-
scent. It has the same input, which is a box b, as the other local search algorithms. Re-
turning pair(Bool, Point) with the same semantics as mentioned in algorithm 4.5. The
restart number in this algorithm is also 50.

With every restart, the point xk takes a random value from the box b. A counter
stop is intialized to 5. For calculating the ratio, the value stored in xk has to be changed.
Therefore, changedF lag is set to true with every restart.

In line 6, r is set to 0.25, meaning that the weight of the change for the direction of
∇f is 0.25, compared to 0.75 for the negative direction of ∇c. We use this ratio because it
is more important to find a feasible solution than finding a point with a small value of f
that is not feasible.

In line 9, if changedF lag is true, the array ratios takes the returned value of the func-
tion getBoxRatio, which will be discussed later. halfRatios is half the value of the
values saved in ratios array such that for every iteration there are 2 step lengths that will
be compared.

Line 14 starts a loop over every variable in the box b, applying the modified steepest
equation that includes the gradient of the violated constraints in the equation 4.2. This is
done over the two points x

′
k+1 and x

′′
k+1, using the ratios and halfRatios, respectively.

In line 25, the function isBetterPoint checks which point x
′
k+1 or x

′′
k+1 is better

with respect to the objective function value and the penalty value. The function is dis-
cussed later in figure 4.14. xk+1 takes the better value.

xk+1 is then checked with xk using the same function isBetterPoint. If xk+1 is a
better point, then xk takes the value of xk+1 and the changedF lag set to true as the value
of xk changed and the stop counter is reset to 5. If it is not the case that xk+1 is a better
point, then the stopping criteria variable stop is decremented and the values in ratios are
halved and the same for halfRatios.

xk is checked for feasibility. If it is feasible, then the pair (true,xk) is returned. If not,
the loop restarts. The modification in line 23 is discussed later.

The overall intuition of this algorithm is to try to obtain a new point xk+1 by going
through a logarithmic search over the gradient line of f and the gradient line of the vi-
olated constraints. This occurs until a point xk+1, which is better than xk, is eventually
found, or the algorithm terminates.

The function getBoxRatio is a direct application of the box ratio equation 4.3. In
figure 4.13, the box ratio function is mentioned. bj .lb is the lower bound of b with respect
to the variable in the jth position of b. bj .ub is the upper bound of the same variable.

The algorithm loops over every variable in b, obtaining the box ratio according to

35

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.4. Box Ratio with Separate Penalty

Steepest Descent

Input: a box b
Output: A pair (Bool, Point)
Result: Getting a local minimum in a box b

1 restarts← 50;
2 for i← 1 to restarts do
3 xk ← random point in b ;
4 stop← 5 ;
5 changedF lag← true;
6 r← 0.25;
7 while stop ≥ 0 do
8 if changedFlag then
9 ratios← getBoxRatio(b,xk,f);

10 for j = 0; j ≤ ratios.size ; j + + do
11 halfRatios[j] = 1

2 × ratios[j];
12 end
13 end
14 for j ← 1 to n do /*n is number of variables in xk*/
15 x

′

(k+1).j ← xk.j − (r× ratios[j]×∇fj);
16 x

′′

(k+1).j ← xk.j − (r× halfRatios[j]×∇fj);
17 foreach constraint c ∈ C do
18 if isViolated(c,xk) then
19 x

′

(k+1).j ← x
′

(k+1).j − (1-r)× ratios[j]×∇cj ;

20 x
′′

(k+1).j ← x
′

(k+1).j − (1-r)× halfRatios[j]×∇cj ;
21 end
22 end
23 \ ∗Modification Here ∗ \
24 end
25 if isBetterPoint(x

′
k+1,x′′k+1) then

26 xk+1← x
′
k+1;

27 else
28 xk+1← x

′′
k+1;

29 end
30 if isBetterPoint(xk+1,xk) then
31 xk ← xk+1;
32 stop← 5;
33 changedF lag← true;
34 else
35 stops← stops− 1;
36 changedF lag← false;
37 for j = 0; j ≤ ratios.size ; j + + do
38 ratios[j] = halfRatios[j];
39 halfRatios[j] = 1

2 × ratios[j];
40 end
41 end
42 end
43 if xk is feasible then
44 return (true,xk);
45 end
46 end
47 return (false,NULL);

FIGURE 4.12: Steepest Descent with Separate penalty and Box ratio

36

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.4. Box Ratio with Separate Penalty

Steepest Descent

equation 4.3.
The comparison between two points in this local search algorithm is performed using

isBetterPoint. The function takes two points x1 and x2, and returns a boolean value,
which is true if it has a lower violations (penalty) value of x1. The penalty of a point x is
calculated with the function getPenalty. If both penalties are the same, then f (x1) and
f (x2) are checked. If f (x1) has a lower value, then it returns false. The function returns
false otherwise, meaning that x1 is better than x2.

Input: Box b, objective Function f and a point x
Output: Array ratios

1 Function getBoxRatio(x, f)
2 for j = 0; j ≤x.size;j++do
3 gradientV alue←∇fx.j ;
4 boxLengthj ←mathitbj .ub−mathitbj .lb;
5 if gradientV alue < 0 then
6 ratios[j]← xj−bj .lb

boxLengthj
;

7 else
8 if gradientV alue > 0 then
9 ratios[j]← bj .ub−xj

boxLengthj
;

10 else
11 ratios[j]← 0 ;
12 end
13 end
14 end
15 return ratios ;

FIGURE 4.13: Box ratio algorithm

The isBetterPoint(x1,x2) function is shown in figure 4.14. It calculates the penal-
ties of the two points using the function getPenalty. It gives a priority to the penalty
value over the value of the objective function f . Therefore, it checks first if x1’s penalty
value is less than the penalty value of x2, in which case it returns true. If both penalty
values are the same, then the value of f is checked, returning true if f (x1) < f (x2), and
false otherwise.

The function getPenalty calculates the penalty of a point x with respect to the con-
straints set C given in the problem. We are assuming that C is global and accessible from
any function in the program.

Figure 4.15 shows two algorithms. The first one is getPenalty, which calculates
the penalty value of a point. In addition, the function isViolated checks if a single
constraint c is violated with respect to a point x.

isViolated checks the violation of a single constraint c with respect to the point x.
The violation is checked according to the type of the constraint. The valid types of con-
straints are the constraints that appear in equation 2.1. The evaluation of the expression

37

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.4. Box Ratio with Separate Penalty

Steepest Descent

Input: Points x1 and x2

Output: Boolean true or false

1 Function isBetterPoint(x1, x2)
2 penalty1← getPenalty(x1);
3 penalty2← getPenalty(x2);
4 if penalty1 < penalty2 then
5 return true
6 else
7 if penalty1 = penalty2 then
8 return (f (x1) < f (x2));
9 end

10 end
11 return false;

FIGURE 4.14: Better Point algorithm

Input: Point x
Output: real value

1 Function getPenalty(x)
2 penalty← 0;
3 foreach constraint c ∈ C do
4 if isViolated(c,x) then
5 penalty← penalty + c(x)2;
6 end
7 end
8 return penalty;

Input: Constraint c, Point x
Output: boolean value

9 Function isViolated(c,x)
10 if type of c equals “ci = 0” then
11 return c(x).ub < 0 || c(x).lb > 0;
12 end
13 if type of c equals “ci ≤ 0” then
14 return c(x).lb > 0
15 end

FIGURE 4.15: Penalty and Violation related functions

38

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.4. Box Ratio with Separate Penalty

Steepest Descent

It xk f (xk) xk.pen rat 1
2rat x

′
k+1 x

′′
k+1 <1 <2

1 10.1843 12.9872 0 0.978448 0.489224 11.1718 12.1593 t t
2 11.1718 9.00121 0 0.13702 0.06851 11.1551 11.1384 f t
3 11.1384 8.97503 0 0.133119 0.0665595 11.1285 11.1186 f t
4 11.1186 8.96543 0 0.1308 0.0654 11.1125 11.1064 f t
5 11.1064 8.96174 0 0.129378 0.064689 11.1026 11.0988 f t
6 11.0988 8.96028 0 0.12849 0.0642448 11.0964 11.094 f t
7 11.094 8.9597 0 0.127929 0.0639643 11.0925 11.091 f t
8 11.091 8.95946 0 0.127572 0.0637858 11.09 11.089 f t
9 11.089 8.95936 0 0.127344 0.0636718 11.0884 11.0878 f t
10 11.0878 8.95932 0 0.127198 0.0635988 11.0874 11.087 f t
11 11.087 8.9593 0 0.127104 0.0635519 11.0867 11.0865 f t
12 11.0865 8.9593 0 0.127044 0.0635218 11.0863 11.0861 f t
13 11.0861 8.95929 0 0.127005 0.0635024 11.086 11.0859 f t
14 11.0859 8.95929 0 0.12698 0.0634899 11.0859 11.0858 f t
15 11.0858 8.95929 0 0.126964 0.0634819 11.0857 11.0857 f t
16 11.0857 8.95929 0 0.126953 0.0634767 11.0857 11.0856 f t
17 11.0856 8.95929 0 0.126947 0.0634734 11.0856 11.0856 f t
18 11.0855 8.95929 0 0.126935 0.0634674 11.0855 11.0855 f f
19 11.0855 8.95929 0 0.0634674 0.0317337 11.0855 11.0855 f f
20 11.0855 8.95929 0 0.0317337 0.0158668 11.0855 11.0855 f f
21 11.0855 8.95929 0 0.0158668 0.00793342 11.0855 11.0855 f f
22 11.0855 8.95929 0 0.00793342 0.00396671 11.0855 11.0855 f f

FIGURE 4.16: Box ratio steepest descent

c(x) using interval arithmetics returns an an interval. The algorithm makes its checks
with the lower and upper bounds of c(x) and returns true if the constraint is violated. In
the constraint type “ci = 0”, if 0 6∈ c(x), then the constraint is violated. In “ci ≤ 0”, the
check is on the lower bound of c(x) such that if c(x).lb > 0, then the constraint is violated.

getPenalty uses the function isViolated(c,x) to check if the constraint ci is vi-
olated at the point x. If it is true, the penalty value is added to the summation variable
penalty. The square value is mainly used to assure that no negative values are added to
the overall penalty value. This can be caused by the constraints of type ci = 0 if the value
c(x) < 0.

In the second algorithm, isViolated, the check of a single constraint violation is
direct and easily readable. If the constraint is an equality constraint, then an equality
check is performed. If the constraint is an inequality constraint, then we check if this
inequality is not satisfied.

After showing and discussing the box ratio with separate penalty steepest descent,
we put it to the test by applying it to example 4.2 which is mentioned in section 4.1. The
algorithm starts by applying a random point from the selected box b.

In table 4.16, the last two columns contain the check for isBetterPoint(x
′
k+1, x

′
k+1)

and isBetterPoint(xk+1, xk), respectively. b has the interval [10, 18.55] for the variable
x. The selected random xk ∈ b is 10.1843 having f (xk) = 12.9872. The nearest local

39

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.4. Box Ratio with Separate Penalty

Steepest Descent

minimum to this position is the point x = 11.0855. We notice the ratio calculations with
respect to the box. Since ∇f (xk) is positive, then the ratio calculation is 18.55−10.18

18.55−10 = 0.97

giving a value of x
′
k+1 = 11.1718 and x

′′
k+1 = 12.1593.

The algorithm chooses x
′
k+1 to be xk+1. We notice how the value of the step length

ratio decreases as xk converges into a local minimum. This process occurs until five
successive false returns from the isBetterPoint(xk+1, xk) function is reached. The av-
erage time taken by the algorithm to find the optimal minimum of the problem is 0.04

seconds after pruning 4 boxes.
In some examples with a big number of constraints, as we will show in the next chap-

ter, the newly obtained point xk+1 might go outside of the box b with the successive
subtraction of the term (1-r)× ratios[j]×∇cj with every violated constraint c ∈ C.

In the modified version of the steepest descent with separate penalty and box ratio, a
small part of code was added to ensure that the obtained xk+1 does not go outside of the
box b for any variable interval in b. This version appears in figure 4.17.

The modification is added in line 23 of original algorithm, figure 4.17. Inside the for-
loop, which loops over the variables in the problem, it checks for every variable in x

′
k+1.j

and x
′′
k+1.j if its value is in the bounds of bj .

1 if x
′
k+1.j < bj .lb then

2 x
′
k+1.j ← bj .lb;

3 end
4 if x

′′
k+1.j < bj .lb then

5 x
′′
k+1.j ← bj .lb;

6 end
7 if x

′
k+1.j > bj .ub then

8 x
′
k+1.j ← bj .ub;

9 end
10 if x

′
k+1.j > bj .ub then

11 x
′
k+1.j ← bj .ub;

12 end

FIGURE 4.17: Modified Box Ratio with Separate Penalty Steepest Descent Algorithm

This modification helps in the comparison between using this algorithm with strictly
bounding the selected points to be from inside the box b, or allowing the algorithm to
choose a point outside of b.

In the example in figure 4.2, this modification will not change the output of the se-
lected box. However, in the next chapter, the effect of this modification will appear, spe-
cially in the number of pruned boxes.

In conclusion, box ratio with dependant penalty algorithm provides a more modu-
lar technique of local search, meaning that the penalty calculation is separated from the
objective function. The algorithm gives more priority to satisfy the constraints, as the

40

4. HYBRID LOCAL SEARCH CONSTRAINT OPTIMIZATION ALGORITHMS 4.4. Box Ratio with Separate Penalty

Steepest Descent

weight of moving into the negative direction of the gradient of the violated constraint is
0.75 of the step length, compared to 0.25 for the gradient of the objective function.

The step length calculation is depending on the width of the box and the sign of the
objective function gradient. This gives a more greedy nature to the algorithm to converge
faster into a local minimum in the box. We have the option to keep all the selected xk-s
to be in the input box b, or it can also be outside of b.

41

5
Testing and Analysis

In this chapter, we present the testing conducted on the algorithms mentioned in the
previous chapter. The collected results are shown and analysed. We try to investigate
which algorithm has a better overall timing. We detect the convergence rate to the global
minimum and the number of needed branches using Procure’s branching algorithm.

Throughout this chapter, two main examples will be used, the Dipigri problem [14],
and the HS108 problem [48]. Afterwards, we show our results on running a subset of the
benchmarks that appears in [48]. This set of benchmarks was developed by Vanderbei
as a part of testing the Optimization language AMPL. It is a standard set of benchmarks
of non-linear optimization models including a collection of models that vary in the num-
ber of variables and constraints. Moreover, they vary in constraints types so they give
the possibility of choosing constrained or unconstrained optimization problems. We dis-
cuss and analyse the gathered results, obtaining a clear conclusion for the comparisons
between the different algorithms.

For each of the upcoming two sections, the problem is described and then the results
of running the different algorithms over this problem are presented. We control the ter-
mination of the algorithms with the relativity conditions. We mention these relativity
conditions in equation 5.1, since most of the problems we will use for testing are known
landmark problems. We can use the available knowledge about the global minimum
from these problems to construct the relativity condition, which stops the search when
this condition is met:

Algorithm stops when:

{
|f (x

′
)− f (x∗)| ≤ |f (x∗)| × r, |f (x∗)| > 1

|f (x
′
)− f (x∗)| ≤ r, |f (x∗)| ≤ 1.

(5.1)

42

5. TESTING AND ANALYSIS 5.1. First Optimization Problem: Dipigri

1 var x{i in 1..7} := [-10..10];
2

3 minimize f:
4 (x[1]-10)^2+5*(x[2]-12)^2+x[3]^4+3*(x[4]-11)^2+
5 10*x[5]^6 + 7*x[6]^2+x[7]^4-4*x[6]*x[7] -10*x[6]-8*x[7];
6

7 subject to cons1:
8 2*x[1]^2+3*x[2]^4+4*x[4]^2+x[3]+5*x[5]-127.0 <= 0;
9 subject to cons2:
10 10*x[3]^2+7*x[1]+3*x[2]+x[4]-x[5]-282.0 <= 0;
11 subject to cons3:
12 x[2]^2+6*x[6]^2+23*x[1]-8*x[7]-196.0 <= 0;
13 subject to cons4:
14 4*x[1]^2+x[2]^2-3*x[1]*x[2]+2*x[3]^2+5*x[6]-11*x[7] <= 0;

FIGURE 5.1: Example 2, Dipigri optimization problem

f (x∗) is the known global minimum value. f (x
′
) is the minimal value found by the

local search algorithm so far. r ∈ [0, 1] is a multiplication coefficient which controls how
close is f (x

′
) from f (x∗), that is the acceptable range to stop the algorithm.

The first equation is the concept of relative error which is a widely used stopping
criterion. It calculates an approximate of a value and normalises it over the original
value. The second equation is the absolute error which calculates the distance between
two values.

The r value is inversely proportional with the accuracy of the obtained f (x
′
). When r

increases, the acceptable range becomes wider and the accuracy decreases. In our tests,
we will use different values for r, to compare the convergence rates of different algo-
rithms over several acceptable ranges.

5.1 First Optimization Problem: Dipigri

The Dipigri problem is presented in [14]. It is a minimization problem with seven vari-
ables, which are subject to four constraints. Figure 5.1 shows the problem in AMPL syn-
tax. AMPL [15] is an abbreviation for A Mathematical Programming Language syntax.
Procure includes an AMPL parser that parses the AMPL problem into Procure structure.
The syntax of AMPL is direct and easily understandable.

The global minimum of the Dipigri problem is 680.6301. In table 5.2, we show the
result of the average of ten runs of the algorithms appeared in the previous chapter on
the given problem. We do that by displaying the average time in seconds and the average
best local minimum reached by every algorithm.

Four values of r are selected. MIDP is the Procure’s default mid-point algorithm
mentioned in 4.1. RAND is the random local search algorithm. AQSD is the Armijo
rule with Quadratic penalty Steepest Descent. Mod. AQSD is the modified version of
it, shown on figure 4.9. BRSP is the Box Ratio with Separate Penalty steepest descent
algorithm. Mod. BRSP is the modification of it, as it can be seen on figure 4.17.

43

5. TESTING AND ANALYSIS 5.1. First Optimization Problem: Dipigri

r = 0.2 r = 0.1 r = 0.01 r = 0.005

Algorithm time (s) f (x
′
) time (s) f (x

′
) time (s) f (x

′
) time (s) f (x

′
)

MIDP 1.13 824.3 3.25 755.9 171.4 687.4 354.6 683.1
RAND 1.28 800.2 1.89 728.7 28.6 686.2 80.92 683.7
AQSD 2.42 780.7 3.14 740.4 437.6 685.5 1515 682.1
Mod. AQSD 2.39 805.7 4.84 738.4 207.1 686.7 1163 683.1
BRSP 1.15 754.4 1.80 710.8 2.96 685.8 10.13 682.8
Mod. BRSP 1.02 721.5 1.91 733.4 3.06 686.5 8.87 683

FIGURE 5.2: Results of the five different algorithms on Dipigri Problem

For r = 0.2, meaning that the acceptable range is in 20% around the global minimum
f (x∗), we find that most of the algorithms find the solution in the first 3 seconds, with
a very slight latency in the AQSD algorithm and its modification. All the algorithms
converge very fast in the beginning around the global minimum area. This shows the
strength of Procure’s propagation algorithms to prune the boxes. Hence, the prune was
successful to eliminate around 80% of the search space in the first second.

The difference starts when r = 0.1. For the random algorithm, it took an average of
1.89 seconds to find a close value to the global minimum. This is better than the MIDP
average time. This shows that trying many random points in a box gives a higher poten-
tial to find a feasible solution faster than getting the mid-point of the box. Moreover, we
notice that the AQSD and its modification are taking slightly more time than the RAND
and the BRSP algorithms. For the BRSP algorithm with r = 0.1, we see that it also gets
the solution almost as fast as r = 0.2. The same applies for the Mod. BRSP algorithm.
Both of the algorithms are having almost the same average time of running. This shows
the convergence speed of the algorithm when we separate the penalty calculation from
the objective function.

For r = 0.01, we see a very noticeable time difference between the algorithms. It took
an average of 28.6 seconds for the random algorithm to find a solution. However, for the
AQSD algorithm, the time taken is significantly more, with 437.6 seconds for the original
method. This is even slower than the normal mid-point algorithm provided by Procure.
This phenomena can be explained by the time taken to calculate the new objective func-
tion Q , for calculating the penalty function. Also, the time taken for converging to better
solutions, since the stopping criteria does not guarantee a stop if the newly obtained xk+1

is very close, almost identical to xk.
Moreover, for the Mod. AQSD, the resulting time is noticeably better than the original

method. Yet, it is still slower than the mid-point and random algorithms. This is mainly
due to the amount of calculations performed, which increases the complexity of the pro-
gram, compared to the simplicity of the mid-point algorithm and the random search.

BRSP algorithm with r = 0.01 performs visibly better than the other algorithms. This
is due to the separation of penalty calculation and function calculations. Moreover, the
greedy step length taken as the distance between the box bound and the current position

44

5. TESTING AND ANALYSIS 5.1. First Optimization Problem: Dipigri

FIGURE 5.3: Dipigri problem algorithms convergence over time

of xk in the box plays a major role. This creates a large step taken by the algorithm in
one iteration, compared to the AQSD algorithm. Mod. BRSP is showing similar time as
the BRSP. This can be explained as follows: the propagation strength of branching and
pruning tightens the search space to include the feasible area and exclude the infeasible
area as much as possible, which decreases the possibility of finding a valid solution when
xk+1 goes outside of the box.

RAND takes an average of 80.92 seconds to reach a solution with r = 0.005, which is
a good time compared to the AQSD algorithm. Considering the accuracy required with
the value of r, AQSD spends more time doing more calculations and slowly converges to
the global minimum.

With larger greedy steps and separation of the penalty calculation and the objective
functions, we find BRSP algorithm even faster than the random search. Moreover, by
not allowing the obtained xk+1 in Mod. BRSP to be outside of the box, performance gets
better with 8.87 seconds on average to obtain a global minimum for this problem.

In conclusion, on the runtime of the problem on the different algorithms we notice
that the algorithms yield a good time when the complexity is lower. As our current
example shows, the random algorithm achieved better time than AQSD algorithm due
to the complexity of the calculations involved in the AQSD algorithms.

BRSP is generally having better performance for this problem than the other algo-
rithms. This can be explained by the greediness of the step length and the less amout of
calculations needed. Mod. BSRP is having the best time on very small values of r. There-
fore we can conclude that separating the penalty calculations from the objective function
is a better technique than getting a quadratic penalty function Q for this example.

In figure 5.3, we show the convergence of the algorithms over time to reach the ob-
tained minimum with r = 0.01. We select a run from the 10 runs we did for every
algorithm. Notice that all the algorithms except the AQSD algorithm converge to a very

45

5. TESTING AND ANALYSIS 5.1. First Optimization Problem: Dipigri

FIGURE 5.4: Dipigri problem algorithms convergence over the first 50 seconds

acceptable area in the first 50 seconds. The AQSD takes more time due to the huge num-
ber of iterations when the new xk+1 is very close xk.

We zoom in on the first 50 seconds in figure 5.4. We observe the fastest algorithm to
converge are the BRSP and Mod. BRSB. However, the Mod. AQSD converges to be very
close to the acceptable area (r = 0.0061), nearly the same area of RAND and BRSP.

Next we discuss every algorithm with r = 0.01. In figure 5.5, we show the average
number of pruned boxes for the Dipigri problem and we calculate the average time taken
per box.

The MIDP algorithm needs 53659 box splits in order to find a solution in the accept-
able range. This is due to the lack of performing any kind of search for the problem.
Therefore, it mainly depends on the power of branching and pruning of the Procure
framework. However, due to the simplicity of the calculations needed to calculate a box’s
mid-point, the average time spent per box is around 3 milliseconds. This gives the algo-
rithm its ability to compensate the huge number of splits with a very small time spent in
one box.

For the RAND algorithm, the random selection of the algorithm for each box is very
low in complexity. The only check done is to decide if the obtained random point x is
feasible or not. This explains the very short time needed per every box which is around
5 milliseconds. The average number of boxes needed to be split and checked are 5934.4

boxes. This shows that it needed a less amount of splits and propagations to find an
acceptable solution than the MIDP algorithm. This is because inside each box, we try
several points as a potential solution instead of only the mid-point.

For the AQSD, we notice the latency during the checking inside a single box. It took
an average of 2084 boxes to find a solution. However, the algorithm on average took 210
milliseconds per box in order to converge to the box’s minimum. Moreover, it might not
reach a solution in the box, since it can keep converging into a point having a better Q(x),

46

5. TESTING AND ANALYSIS 5.1. First Optimization Problem: Dipigri

algorithm Boxes Av. t per box (msec.)
MIDP 53659 3
RAND 5934 5
AQSD 2084 210
Mod.AQSD 1874 110
BRSP 182 16
Mod.BRSP 157 19

FIGURE 5.5: Dipigri average number of branched boxes and the average time per box
r = 0.01

650
700
750
800
850
900

0 10 20 30 40 50 60

Objective

Iterate

Objective Function over time

objective

0
20
40
60
80

100
120
140

0 10 20 30 40 50 60

Penalty

Iterate

Penalty Value over time

Penalty

FIGURE 5.6: Objective function vs Penalty over time in BRSP
.

but one which is not a feasible point. We will discuss this more in figure 5.7.
Mod.AQSD eliminates that huge amount of iterations due to the modified stopping

criteria, reducing the overall time by about 40%. However, we notice in the Mod. AQSD,
that after 33 seconds, the algorithm converged to a value of r = 0.012.

The Mod. BRSP has the best solution timings with an average of 156 boxes branched,
with an average of 19 milliseconds per box. This happens due to the greedy technique
of the step length selection. It also restricts the selected points to be inside the box. This
shows the power of the BRSP and its modification to find a feasible solution inside a box
in a very fast time. Thus making it perform lower number of splits, which improves the
overall time taken by the algorithm.

We see in figure 5.6 the iteration inside a box using the BRSP problem. The box b
presented is a box where the final solution for the Dipigri problem was found. When the
iterations start on b, the point xk has a very high penalty value. In the next iterations, the
algorithm is more concerned with decreasing the penalty value more than the objective
function value. Which in turn causes a decrease in the penalty value, not taking into
account the value of the objective function.

47

5. TESTING AND ANALYSIS 5.2. Second Optimization Problem : HS108

700
800
900

10001100
1200
1300
1400

0 2 4 6 8 10 12

Objective

Iterate

Objective Function over time

objective

0
500

1000
1500
2000
2500

0 2 4 6 8 10 12

Penalty

Iterate

Penalty Value over time

Penalty

FIGURE 5.7: Objective function vs Penalty over time in AQSD
.

In later iterations, we notice the penalty value becoming 0 around the 18th iteration.
After this point, the algorithm is concerned only in obtaining new points with a lower
objective function value. This happens until eventually a point with an objective function
value close to the global minimum is obtained.

On the other hand, in figure 5.7 we show the iterations of the Mod.AQSD over one of
the boxes with r = 0.01. However, instead of showing the value of Q(xk), we show the
two values of the normal objective function f (xk) and the penalty value of xk, which is
calculated using the function getPenalty(x) shown in figure 4.15.

We notice that in the first and second iterations, the penalty value decreases to zero.
However, in the next two iterations, a new point xk+1 is tried having f (xk+1) = 752.7 and
penalty(xk+1) = 2035. With the increasing value of µ over every iteration, the penalty
value is decreased to a quarter of its value.

This happens until in the 5th iteration, when Q(xk+1) = 752 + 1
2µ × 2035 and µ = 2.

Causing the value of Q(x) to be 1007.07 which is less than Q(xk) = 1373. Therefore, xk+1

is the new xk. However, the algorithm does find a new point which is a feasible point.
In conclusion, the box fails to return a feasible point. This increased latency of finding a
feasible point, in turn increases the number of checked boxes.

5.2 Second Optimization Problem : HS108

The HS108 is a problem from the benchmark set of Vanderbei, it appears in [48]. This
problem has nine variables and fourteen constraints. This is a bigger number than the ones
of the Dipigri problem. The problem is having a global minimum of −0.866. Therefore,
the absolute error technique is used from equation 5.1. We show the problem in AMPL

48

5. TESTING AND ANALYSIS 5.2. Second Optimization Problem : HS108

1 var x {1..9};
2

3 minimize obj:
4 -.5*(x[1]*x[4]-x[2]*x[3]+x[3]*x[9]-x[5]*x[9]+x[5]*x[8]-x[6]*x[7]);
5

6 s.t. c1: 1-x[3]^2-x[4]^2>=0;
7 s.t. c2: 1-x[5]^2-x[6]^2>=0;
8 s.t. c3: 1-x[9]^2>=0;
9 s.t. c4: 1-x[1]^2-(x[2]-x[9])^2>=0;
10 s.t. c5: 1-(x[1]-x[5])^2-(x[2]-x[6])^2>=0;
11 s.t. c6: 1-(x[1]-x[7])^2-(x[2]-x[8])^2>=0;
12 s.t. c7: 1-(x[3]-x[7])^2-(x[4]-x[8])^2>=0;
13 s.t. c8: 1-(x[3]-x[5])^2-(x[4]-x[6])^2>=0;
14 s.t. c9: 1-x[7]^2-(x[8]-x[9])^2>=0;
15 s.t. c10: x[1]*x[4]-x[2]*x[3]>=0;
16 s.t. c11: x[3]*x[9]>=0;
17 s.t. c12: -x[5]*x[9]>=0;
18 s.t. c13: x[5]*x[8]-x[6]*x[7]>=0;
19 s.t. c14: x[9]>=0;

FIGURE 5.8: Example 3, HS108 optimization problem

r = 0.3 r = 0.2 r = 0.1

Algorithm time f (x
′
) time f (x

′
) time f (x

′
)

MIDP 0.90 -0.722 0.88 -0.723 21.71 -0.780
RAND 0.64 -0.618 1.78 -0.686 11.03 -0.7825
AQSD 18.70 -0.694 44.34 -0.688 >1000 > -0.6
Mod. AQSD 5.58 -0.597 27.52 -0.694 >1000 > -0.6
BRSP 0.11 -0.594 0.67 -0.697 6.08 -0.782
Mod. BRSP 0.12 -0.629 0.65 -0.686 3.99 -0.77

FIGURE 5.9: Average results of the five different algorithms on HS108 problem

syntax in figure 5.8. We select three values of r. r = 0.3, r = 0.2 and r = 0.1.
We run the problem on the six algorithms presented in the previous chapter. We

run every algorithm ten times. The results of the average time and obtained objective
functions appear in figure 5.9.

For r = 0.3, meaning that |f (x
′
) − f (x∗)| ≤ 0.3, we notice that the AQSD algorithm

takes a very noticeably longer average time than the other algorithms. This is explained
due to the stopping criteria that does not stop if the newly obtained point xk+1 in the box
is very close to the point xk. It gets better with only 5.58 seconds with the Mod.AQSD
algorithm. However, the other algorithms score a better average time under 1 second.

For r = 0.2, we notice a very slight difference between the average of the MIDP and
RAND algorithms. However, the more noticeable difference is the one of the AQSD. This
shows that the convergence to a minimal point is very slow, taking a lot of iterations
which increase the time to solve the problem. The Mod.AQSD decreases the time by
about 40%. This is very slow compared with the average timings obtained by the other
algorithms.

The BSRP algorithm and its modification shows better average time than all the other

49

5. TESTING AND ANALYSIS 5.2. Second Optimization Problem : HS108

FIGURE 5.10: HS108 problem algorithms convergence over time with r = 0.2

algorithms. This shows that the separation of penalty from the calculation of the objective
function and having greedy step lengths to the edge of the box converges faster into a
minimal point.

The average time of AQSD and its modification are over 1000 seconds when r = 0.1.
Which means that it is very hard to find a feasible point when we use the AQSD. We will
clarify this in figure 5.12. The BSRP algorithm took 6.08 seconds to find a solution with
r = 0.1. With the modification Mod. BRSP, this time is almost halved which shows the
power of Procure’s constraint propagation techniques, and that the feasible solutions are
inside a pruned box.

In figure 5.10, we show the convergence of the best minimal point f (x
′
) over time

until it reaches an absolute error less than or equal to 0.2. We observe the very slow
convergence rate of both the AQSD and Mod.AQSD.

We notice also the very quick convergence of all the other algorithms to the acceptable
range in the first second. In figure 5.11, we show the first second of figure 5.10. BRSP and
its modification converges first to the acceptable area, then followed by the RAND and
MIDP algorithms.

In this problem, we see again the advantage gained by separating the penalty from the
objective function and using the long step lengths to the edge of the box in BRSP and its
modification. It allows fast convergence to the box’s local minimum. Moreover, the focus
on reducing the penalty value of the point xk first, then reducing the objective function
makes the algorithm find a feasible point more frequently than the AQSD algorithms.

Thus, with the Mod. BRSP and relatively small values of r, we get the best conver-
gence rate to the acceptable areas. This shows again the strength of the Procure constraint
propagation techniques to prune the boxes so that global minimum exists in one of the
pruned boxes.

On the other hand, we notice that the quadratic penalty technique is not as efficient

50

5. TESTING AND ANALYSIS 5.3. Benchmarks and Comments

FIGURE 5.11: Dipigri problem algorithms convergence over the first second

as separating the penalty from the objective function. As this can cause the search to fail
to find a feasible point in several boxes, which delays the constraint propagations done
by Procure. Having more control over the stopping criteria in Mod. AQSD gives better
timing, as it cuts off a big number of iterations. However, this does not solve the main
problem of the quadratic penalty approach, because the difficulty of finding a feasible
solution stays the same.

In figure 5.12. we show the iterations of the AQSD over one of the boxes with r = 0.2.
We show the two values of the normal objective function f (xk) and the penalty value of
xk, the same as figure 5.7.

We notice again the same as the Dipigri problem how the algorithm fails to find a
feasible solution in this box even if it found a feasible point twice, at the 2nd and 5th itera-
tions. This shows that with the AQSD algorithm and its modification, it is not guaranteed
that if a feasible point is found in a box, it will be returned as the solution.

Therefore, in the HS108 problem, the technique of the BRSP algorithm scores the best
times and the modified version Mod.BRSP has the fastest time. Moreover, The AQSD
algorithm is the slowest technique to solve this problem.

5.3 Benchmarks and Comments

In this section, we show the result of running a set of the benchmarks that appears in [48].
We changed the stopping criteria of the program: instead of giving the error value r and
wait for the algorithm to reach this r. We have two controllers as the search stops when
it exceeds the time t or when a specific error value r

′
reached.

We run the benchmarks with t = 60 seconds and r
′

= 0.0001. We run every problem
for the six algorithms ten times each. We calculate the average for each algorithm and
show the results in the following table.

51

5. TESTING AND ANALYSIS 5.3. Benchmarks and Comments

-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10
0.1

0 2 4 6 8 10 12 14

Objective

Iterate

Objective Function over time

objective

0
1
2
3
4
5
6

0 2 4 6 8 10 12 14

Penalty

Iterate

Objective Function over time

Penalty

FIGURE 5.12: HS108 objective function vs Penalty over time in AQSD
.

Problem V C f (x∗) f (x
′
) Boxes r time

allinitMIDP 3 0 5.7444 16.7073 5793 0.0001 12.184
allinitRAND 3 0 5.7444 16.707 4057.7 0.0001 10.1098
allinitAQSD 3 0 5.7444 16.706 1.8333 0.0001 1.4055
allinitModAQSD 3 0 5.7444 16.7071 43.8 0.0001 2.3422
allinitBRSP 3 0 5.7444 16.706 119.4 0.0001 1.1929
allinitModBRSP 3 0 5.7444 16.706 3 0.0001 0.135

allinituMIDP 4 0 5.7444 5.7891 4459 0.0077 60
allinituRAND 4 0 5.7444 5.7839 4339.8 0.0068 60
allinituAQSD 4 0 5.7444 168 22.5 32.6 60
allinituModAQSD 4 0 5.7444 5.7509 396.7 0.0011 60
allinituBRSP 4 0 5.7444 5.7444 556.9 0.0001 10.552
allinituModBRSP 4 0 5.7444 5.7444 55.8 0.0001 2.0245

biggs3MIDP 3 0 0 3.1045 31815 3.1045 60
biggs3RAND 3 0 0 2.2463 20473.8 2.2463 60
biggs3AQSD 3 0 0 0 30.8 0.0001 38.4692
biggs3ModAQSD 3 0 0 0.2017 693.7 0.2018 44.101
biggs3BRSP 3 0 0 0.1424 1490.7 0.1424 24.2823
biggs3ModBRSP 3 0 0 0.4259 4052.5 0.4259 60

biggs5MIDP 5 0 0.0056 9.8637 4274 9.8581 60
biggs5RAND 5 0 0.0056 0.5998 1730.7 0.5942 60
biggs5AQSD 5 0 0.0056 8.93 100.8 8.9244 60
biggs5ModAQSD 5 0 0.0056 6.9961 192.5 6.9905 60
biggs5BRSP 5 0 0.0056 0.4491 1117.1 0.4435 60
biggs5ModBRSP 5 0 0.0056 0.2725 457.9 0.2669 60

biggs6MIDP 6 0 0 9.8637 5542 9.8637 60
biggs6RAND 6 0 0 8.7449 2974.1 8.7449 60

52

5. TESTING AND ANALYSIS 5.3. Benchmarks and Comments

Table 5.1 .. Continued from previous page
Problem V C f (x∗) f (x

′
) Boxes r time

biggs6AQSD 6 0 0 9.7479 147.5 9.7479 60
biggs6ModAQSD 6 0 0 9.8562 156.5 9.8562 60
biggs6BRSP 6 0 0 7.9975 1669.2 7.9975 60
biggs6ModBRSP 6 0 0 0.3064 474.1 0.3064 60

cliffMIDP 2 0 0.1998 0.1998 1953 0.0001 19.748
cliffRAND 2 0 0.1998 0.1999 1704.5 0.0001 16.6891
cliffAQSD 2 0 0.1998 0.1998 120 0.0001 16.4268
cliffModAQSD 2 0 0.1998 0.1998 208 0.0001 5.8508
cliffBRSP 2 0 0.1998 0.1998 131.4 0.0001 4.7205
cliffModBRSP 2 0 0.1998 0.1998 139 0.0001 4.7638

denschndMIDP 3 0 0 0 1071 0.0001 41.683
denschndRAND 3 0 0 0.0001 410.7 0.0001 11.0175
denschndAQSD 3 0 0 678 43.7 678 60
denschndModAQSD 3 0 0 16x5 325.8 16x6 60
denschndBRSP 3 0 0 0 316.1 0.0001 10.9872
denschndModBRSP 3 0 0 0 457.1667 0.0001 17.5355

dipigriMIDP 7 4 680.6301 692.798 16586 0.0176 60
dipigriRAND 7 4 680.6301 684.6948 11860.5 0.0059 60
dipigriAQSD 7 4 680.6301 694.2605 510.4 0.0196 60
dipigriModAQSD 7 4 680.6301 695.4887 527.5 0.0213 60
dipigriBRSP 7 4 680.6301 682.4481 3401.9 0.0027 60
dipigriModBRSP 7 4 680.6301 682.0021 2166.3 0.0012 60

ex3.1.4MIDP 3 3 -4 -3.9996 8625 0.0001 16.24
ex3.1.4RAND 3 3 -4 -3.9997 8136.5 0.0001 15.8626
ex3.1.4AQSD 3 3 -4 -3.9424 16.4 0.0147 50.7582
ex3.1.4ModAQSD 3 3 -4 -3.6544 39.1 0.1243 60
ex3.1.4BRSP 3 3 -4 -4 34.3 0.0001 1.8473
ex3.1.4ModBRSP 3 3 -4 -3.8471 577.2 0.0405 60

ex8.5.3MIDP 5 5 -0.0042 0.0006 7042 0.0048 60
ex8.5.3RAND 5 5 -0.0042 -0.0024 6647.3 0.002 60
ex8.5.3AQSD 5 5 -0.0042 1×107 13 1×107 60
ex8.5.3ModAQSD 5 5 -0.0042 1×107 13 1×107 60
ex8.5.3BRSP 5 5 -0.0042 0.0777 138.6 0.0819 60
ex8.5.3ModBRSP 5 5 -0.0042 0.0778 852.8 0.082 60

ex8.5.4MIDP 5 4 -0.0004 -0.0001 4293 0.0003 60
ex8.5.4RAND 5 4 -0.0004 0.1367 3716.5 0.1371 60
ex8.5.4AQSD 5 4 -0.0004 8×105 13.1 8×105 60
ex8.5.4ModAQSD 5 4 -0.0004 1×107 13.8 1×107 60
ex8.5.4BRSP 5 4 -0.0004 0.5694 193.6 0.5698 60
ex8.5.4ModBRSP 5 4 -0.0004 0.4765 331.1 0.4769 60

expfitbMIDP 5 101 0.005 21387.9 1145 21387.9 60
expfitbRAND 5 101 0.005 3232.8793 562.5 3232.8743 60
expfitbAQSD 5 101 0.005 749999.25 0.75 749999.25 60
expfitbModAQSD 5 101 0.005 1×107 1 1×107 60
expfitbBRSP 5 101 0.005 2024 21.6 2024 60

53

5. TESTING AND ANALYSIS 5.3. Benchmarks and Comments

Table 5.1 .. Continued from previous page
Problem V C f (x∗) f (x

′
) Boxes r time

expfitbModBRSP 5 101 0.005 1940 15.7 1940 60

genhumpsMIDP 5 0 0 0.0001 3637 0.0001 31.569
genhumpsRAND 5 0 0 0.0001 1072.8 0.0001 21.4408
genhumpsAQSD 5 0 0 0 1.5 0.0001 2.914
genhumpsModAQSD 5 0 0 0 4.7 0.0001 3.3894
genhumpsBRSP 5 0 0 0 8.1 0.0001 0.8991
genhumpsModBRSP 5 0 0 0 8.4 0.0001 0.9687

haifasMIDP 7 9 -0.45 30.0492 5941 30.4992 60
haifasRAND 7 9 -0.45 9×105 5985.6 9×105 60
haifasAQSD 7 9 -0.45 0.8859 8.6 1.3359 60
haifasModAQSD 7 9 -0.45 -0.0134 12.1 0.4366 60
haifasBRSP 7 9 -0.45 -0.4451 1430.2 0.0049 60
haifasModBRSP 7 9 -0.45 -0.3572 104.2 0.0928 60

himmelbfMIDP 4 0 318.5717 5434.38 1150 0.9414 60
himmelbfRAND 4 0 318.5717 2020.4956 1045.3 0.7955 60
himmelbfAQSD 4 0 318.5717 11142.038 14 0.9611 60
himmelbfModAQSD 4 0 318.5717 4213.4627 284.4 0.8948 60
himmelbfBRSP 4 0 318.5717 2649.6384 588 0.8355 60
himmelbfModBRSP 4 0 318.5717 1595.4241 366.4 0.7047 60

hs043MIDP 4 3 -44 -43.9536 10341 0.0011 60
hs043RAND 4 3 -44 -43.9819 9377.6 0.0004 60
hs043AQSD 4 3 -44 -43.4956 268.1 0.0116 60
hs043ModAQSD 4 3 -44 -43.771 594.1 0.0052 60
hs043BRSP 4 3 -44 -43.986 3720.6 0.0003 60
hs043ModBRSP 4 3 -44 -43.9314 2055 0.0016 60

hs086MIDP 5 6 -32.3487 -31.8958 14664 0.0142 60
hs086RAND 5 6 -32.3487 -31.9032 14920.1 0.014 60
hs086AQSD 5 6 -32.3487 -2 1.1 15.1 60
hs086ModAQSD 5 6 -32.3487 -25.0358 20.6 0.3245 60
hs086BRSP 5 6 -32.3487 -31.9804 3187.5 0.0115 60
hs086ModBRSP 5 6 -32.3487 -31.7267 3075.7 0.0196 60

hs100MIDP 7 4 678.7547 692.798 17064 0.0176 60
hs100RAND 7 4 678.7547 684.8632 13053.2 0.0062 60
hs100AQSD 7 4 678.7547 693.7088 543.3 0.0188 60
hs100ModAQSD 7 4 678.7547 694.5121 564.1 0.02 60
hs100BRSP 7 4 678.7547 682.713 3405.1 0.0031 60
hs100ModBRSP 7 4 678.7547 682.5004 1606.8 0.0027 60

hs100modMIDP 7 4 678.7547 685.772 30380 0.0102 60
hs100modRAND 7 4 678.7547 680.6367 25094.3 0.0028 60
hs100modAQSD 7 4 678.7547 687.2776 1092.6 0.0124 60
hs100modModAQSD 7 4 678.7547 686.9273 1105 0.0119 60
hs100modBRSP 7 4 678.7547 680.1308 4465 0.002 60
hs100modModBRSP 7 4 678.7547 680.5883 2251.2 0.0027 60

hs108MIDP 9 13 -0.866 -0.7806 29575 0.0854 60
hs108RAND 9 13 -0.866 -0.8096 26001.7 0.0564 60

54

5. TESTING AND ANALYSIS 5.3. Benchmarks and Comments

Table 5.1 .. Continued from previous page
Problem V C f (x∗) f (x

′
) Boxes r time

hs108AQSD 9 13 -0.866 -0.7169 39.9 0.1491 60
hs108ModAQSD 9 13 -0.866 -0.706 142 0.16 60
hs108BRSP 9 13 -0.866 -0.8202 4248.6 0.0858 60
hs108ModBRSP 9 13 -0.866 -0.8127 3481.5 0.0533 60

hs113MIDP 10 8 24.3062 42.0184 31130 0.4215 60
hs113RAND 10 8 24.3062 37.5323 28219.4 0.3498 60
hs113AQSD 10 8 24.3062 391.9319 95.8 0.6954 60
hs113ModAQSD 10 8 24.3062 52.1355 151.6 0.5115 60
hs113BRSP 10 8 24.3062 27.5105 2160.6 0.1159 60
hs113ModBRSP 10 8 24.3062 28.7812 459.7 0.1539 60

leastMIDP 3 0 14085.1 25127.5 1878 0.4395 60
leastRAND 3 0 14085.1 25033.39 1946.1 0.4373 60
leastAQSD 3 0 14085.1 17188008.7 26.8 0.9852 60
leastModAQSD 3 0 14085.1 24783.01 426.5 0.4316 60
leastBRSP 3 0 14085.1 25602.99 1497.3 0.4492 60
leastModBRSP 3 0 14085.1 25175.4 1437.2 0.4404 60

minmaxrbMIDP 3 4 0 0 1445 0.0001 0.336
minmaxrbRAND 3 4 0 0.0001 1172.75 0.0001 0.2575
minmaxrbAQSD 3 4 0 349.6232 14.5 349.6232 60
minmaxrbModAQSD 3 4 0 311.302 21.9 311.302 60
minmaxrbBRSP 3 4 0 0.0001 51.8 0.0001 2.0725
minmaxrbModBRSP 3 4 0 0.0001 51.8 0.0001 1.9126

mistakeMIDP 9 13 -1 -0.9579 35713 0.0421 60
mistakeRAND 9 13 -1 -0.9638 38177.7 0.0362 60
mistakeAQSD 9 13 -1 -0.8002 27.9 0.1998 60
mistakeModAQSD 9 13 -1 -0.8113 137 0.1887 60
mistakeBRSP 9 13 -1 -0.9744 4613.8 0.0256 60
mistakeModBRSP 9 13 -1 -0.9799 3111.5 0.011 60

osborneaMIDP 5 0 0.0001 5579.52 0 5579.52 60
osborneaRAND 5 0 0.0001 12167791.5 739 12167791.5 60
osborneaAQSD 5 0 0.0001 1.106 1.9 1.1059 60
osborneaModAQSD 5 0 0.0001 1.1945 6.9 1.1944 60
osborneaBRSP 5 0 0.0001 171.9015 166.9 171.9014 60
osborneaModBRSP 5 0 0.0001 13.5723 0 13.5723 60

pspdocMIDP 4 0 2.4142 2.4144 1399 0.0001 8.795
pspdocRAND 4 0 2.4142 2.4144 561.9 0.0001 3.9262
pspdocAQSD 4 0 2.4142 12374.0959 83.6 0.7998 58.7231
pspdocModAQSD 4 0 2.4142 2.4143 231.3 0.0001 7.5099
pspdocBRSP 4 0 2.4142 2.4142 195.1 0.0001 11.8092
pspdocModBRSP 4 0 2.4142 2.4142 207.3 0.0001 13.3074

rosenmmxMIDP 5 4 -44 -18.3206 2889 1.4017 60
rosenmmxRAND 5 4 -44 106837.6811 3226 2.1608 60
rosenmmxAQSD 5 4 -44 2.6461 6 1.834 60
rosenmmxModAQSD 5 4 -44 -29.8421 18.4 0.5764 60
rosenmmxBRSP 5 4 -44 -42.7868 206.3 0.0287 60

55

5. TESTING AND ANALYSIS 5.3. Benchmarks and Comments

Table 5.1 .. Continued from previous page
Problem V C f (x∗) f (x

′
) Boxes r time

rosenmmxModBRSP 5 4 -44 -42.7881 192.9 0.0283 60

snakeMIDP 2 2 -0.0085 6251.7 9608 6251 60
snakeRAND 2 2 -0.0085 26014.404 8882.6 26014 60
snakeAQSD 2 2 -0.0085 3126.426 5.1 3126 60
snakeModAQSD 2 2 -0.0085 4668.011 83.1 4668 60
snakeBRSP 2 2 -0.0085 1982.9444 403.3 1982 60
snakeModBRSP 2 2 -0.0085 1290.3874 436.8 1290 60

TABLE 5.1: Results obtained from the benchmarks set

We tested our algorithms over 28 optimization problems. V is the number of variables
in the problem. C is the number of constraints. We notice that the general pattern is
that the RAND and MIDP algorithms are relatively close to each other with respect to
f (x

′
) and r. However, with respect to the average number of checked boxes, the MIDP

algorithm have a very high number compared to the algorithm. This is due to the nature
of the RAND that checks more points than the MIDP inside a box b which gives more
potential for RAND to find a feasible point.

The benchmarks also confirm the results we obtained in the previous sections regard-
ing the AQSD and the Mod.AQSD algorithms. Combining the constraints penalty and the
objective function value into one function using the quadratic penalty technique is not ef-
ficient as it takes a long time for the calculation. We notice that AQSD and Mod.AQSD
have the highest values of r. The average number of boxes checked by AQSD and its
modification is very low compared to other algorithms. This is due to the long time
taken for every box to converge slowly to a local minimum and not guaranteeing a feasi-
ble point at the end of the search.

However, if the comparison is only between AQSD and Mod.AQSD, then with a mod-
ified stopping criteria that stops the search in the box if the convergence rate is very slow
in Mod.AQSD has an advantage and a lower value of r. The number of boxes explored
by AQSD is on average lower than the Mod.AQSD due to the modified stopping criteria
of the Mod.AQSD.

BRSP and Mod.BRSP algorithms score the best values of r in almost all the algorithms.
Separating the penalty values from the objective function and prioritizing the points with
lower penalty value over lower objective function value proves to be a better approach
to find the box’s local minimum.

The average number of boxes checked by the BRSP is higher than Mod. BRSP. Since
the potential of finding a feasible point is higher inside the box due to the strength of
the procure box pruning algorithms. Then the boxes checked by Mod.BRSP have higher
possibility to return a feasible point, allowing the procure search algorithm to rearrange
the boxes and branch further.

56

5. TESTING AND ANALYSIS 5.3. Benchmarks and Comments

When the optimization problem is constraints-free, as in denschnd and biggs5, BRSP
has lower error value r or better timing than Mod.BRSP. This can be explained that since
there are no restrictions over the variables domains’ in the optimization problem, there-
fore, it is more safe to go outside a box b during the local search. This is only in case the
point xk+1 outside of b is having a lower penalty value or objective function value as it is
shown in the algorithm isBetterPoint(x1,x2) in figure 4.14.

In conclusion, after running the tests and the benchmarks, we can conclude that the
box ratio with separated penalty algorithm is better with respect to time taken to find the
local minimum than the Armijo rule with quadratic penalty steepest descent algorithm.
Moreover, using a random algorithm to try to find the local minimum is a faster technique
than calculating the mid-point of the box as it increases the chances of finding a better
feasible point.

57

6
Conclusion and Future work

In this work, we propose to solve optimization problems with a hybrid of continuous
constraint satisfaction and local search. We introduced two local search algorithms and
integrated them into the continuous domain constraint framework Procure.

In CCSP, the search space is divided into several areas, called boxes. Then a search
algorithm is performed on these boxes to find a feasible point inside every box. Two
local search algorithms were introduced to override Procure’s technique to search inside
the box which is simply returning the midpoint of the box and focusing more on the
constraint propagations and branching and pruning.

The first algorithm is Armijo rule with quadratic penalty steepest descent (AQSD).
It uses the steepest descent technique with the famous Armijo rule for selecting the step
length and quadratic penalty function in order to integrate the constraints into the objec-
tive function. The local search algorithm stops when a counter decreases to zero after a
number of iteration with no point xk+1 having a better quadratic penalty function value
than xk.

However, from the tests we conducted, we found that the algorithm takes a very long
time to converge to a local minimum. Therefore, in the Mod.AQSD, we altered to stopping
criteria such that the counter will stop decreasing if the difference between xk+1 and xk is
significant. This improved the time scored for the search but the improvement is not very
significant. Specially when it is compared to a simple random search algorithm inside the
box.

The second algorithm we introduced is the Box ratio with Separate Penalty steepest
descent (BRSP). It also uses the steepest descent technique. For the step length it uses
a greedy algorithm that tries the largest step to the edge of the box. The constraints are
not integrated in the objective function. However, steepest descent is applied over the

58

6. CONCLUSION AND FUTURE WORK

violated constraints at the point xk. The algorithm does not force any boundaries for xk
to be inside the box b.

A modification is applied to the BRSP algorithm. This modification (Mod.BRSP) forces
the algorithm to select points only from inside the given box b. The algorithm showed its
efficiency in the examples discussed in this work. Having the fast times in comparison
with the other algorithms.

We tested the algorithms introduced, their modification, a random selection algo-
rithm and Procure’s default midpoint algorithm on a set of benchmarks. The results
obtained shows that:

• BRSP technique for local search inside the box have the fastest convergence rate to
a local minimum among the other algorithms.

• Mod.BRSP algorithm is generally the fastest local search algorithm in comparison
with the other discussed algorithms. This can be explained by the strong box prun-
ing algorithms executed by Procure over the box. Hence, restricting the point to be
inside the box interval is more efficient.

• The algorithm with slowest convergence rate is the AQSD as it takes a relatively
longer time in a single box to converge to a local minimum.

• BRSP have a slight advantage over Mod.BRSP in unconstrained optimization prob-
lems. Since allowing the algorithm to converge to a local minimum outside the box
b starting inside b will return a feasible point. This is because there is no restriction
on the domain of the optimization problem.

We suggest for future work to improve the BRSP algorithm and to apply different
alternative local search techniques.

BRSP algorithm can be improved by making the value r dynamic, such that its weight
varies according to the amount of violated constraints at the selected point xk. Moreover,
we assign the number of restarts to 50. We would suggest to make this number dynamic
with respect to the size of the split boxes so it would be proportional to the volume of the
box.

We would also suggest for future work to investigate more in applying different local
search techniques other than the steepest descent algorithms like Lagrangian methods
and compare the results with the ones obtained in this work.

59

Bibliography

[1] G Arfken. “The method of steepest descents”. In: Mathematical methods for physicists
3 (1985), pp. 428–436.

[2] L. Armijo et al. “Minimization of functions having Lipschitz continuous first partial
derivatives”. In: Pacific Journal of mathematics 16.1 (1966), pp. 1–3.

[3] F Benhamon, D McAllester, and P Van Hentenryck. “CLP (Intervals) revisited”. In:
Rapport technique, Citeseer (1994), p. 30.

[4] F. Benhamou. “Heterogeneous constraint solving”. In: Algebraic and Logic Program-
ming. Springer. 1996, pp. 62–76.

[5] P. T. Boggs and J. W. Tolle. “Sequential quadratic programming”. In: Acta numerica
4 (1995), pp. 1–51.

[6] R. Chelouah and P. Siarry. “Tabu search applied to global optimization”. In: Euro-
pean Journal of Operational Research 123.2 (2000), pp. 256–270.

[7] A. R. Conn, N. I. Gould, and P. L. Toint. Trust region methods. Vol. 1. Siam, 2000.

[8] J. Cruz. “Constraint Reasoning for Differential Models”. Pedro Barahona (superv.);
PhD thesis. FCT/UNL, 2003.

[9] G. B. Dantzig. “Linear Programming”. In: Operations Research 50.1 (2002), pp. 42–47.

[10] E. Davis. “Constraint propagation with interval labels”. In: Artificial intelligence 32.3
(1987), pp. 281–331.

[11] A. Dekkers and E. Aarts. “Global optimization and simulated annealing”. In: Math-
ematical programming 50.1-3 (1991), pp. 367–393.

[12] J. E. Dennis Jr and R. B. Schnabel. Numerical methods for unconstrained optimization
and nonlinear equations. Vol. 16. Siam, 1996.

[13] L. Di Gaspero, J. Gärtner, N. Musliu, A. Schaerf, W. Schafhauser, and W. Slany. “A
hybrid LS-CP solver for the shifts and breaks design problem”. In: Hybrid Meta-
heuristics. Springer, 2010, pp. 46–61.

60

BIBLIOGRAPHY

[14] G Di Pillo and L Grippo. “A new augmented Lagrangian function for inequality
constraints in nonlinear programming problems”. In: Journal of Optimization Theory
and Applications 36.4 (1982), pp. 495–519.

[15] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A mathematical programming
language. AT&T Bell Laboratories Murray Hill, NJ 07974, 1987.

[16] M. Gendreau and J.-Y. Potvin. Handbook of metaheuristics. Vol. 2. Springer, 2010.

[17] P. E. Gill, W. Murray, and M. H. Wright. Practical optimization. Academic Press, 1981,
pp. I–XVI, 1–401. ISBN: 978-0-12-283952-8.

[18] L. Granvilliers and F. Benhamou. “Algorithm 852: Realpaver: an interval solver us-
ing constraint satisfaction techniques”. In: ACM Transactions on Mathematical Soft-
ware (TOMS) 32.1 (2006), pp. 138–156.

[19] E. Hansen and G. W. Walster. Global optimization using interval analysis: revised and
expanded. Vol. 264. CRC Press, 2003.

[20] P. V. Hentenryck and L. Michel. Constraint-based local search. The MIT Press, 2009.

[21] M. R. Hestenes. “Multiplier and gradient methods”. In: Journal of optimization theory
and applications 4.5 (1969), pp. 303–320.

[22] J. Hooker. Logic-based methods for optimization: combining optimization and constraint
satisfaction. Vol. 2. John Wiley & Sons, 2011.

[23] R. Horst, P. M. Pardalos, and H. E. Romeijn. Handbook of global optimization. Vol. 2.
Springer, 2002.

[24] E. Hyvönen. “Constraint reasoning based on interval arithmetic: the tolerance prop-
agation approach”. In: Artificial Intelligence 58.1 (1992), pp. 71–112.

[25] L. V. Kantorovich. “A new method of solving some classes of extremal problems”.
In: Doklady Akad Sci USSR. Vol. 28. 1940, pp. 211–214.

[26] N. Karmarkar. “A new polynomial-time algorithm for linear programming”. In:
Combinatorica 4.4 (1984), pp. 373–396.

[27] R. B. Kearfott. “Interval computations: Introduction, uses, and resources”. In: Euro-
math Bulletin 2.1 (1996), pp. 95–112.

[28] O. Lhomme. “Consistency techniques for numeric CSPs”. In: IJCAI. Vol. 93. Cite-
seer. 1993, pp. 232–238.

[29] H. R. Lourenço, O. C. Martin, and T. Stutzle. “Iterated local search”. In: arXiv preprint
math/0102188 (2001).

[30] A. K. Mackworth. “Consistency in networks of relations”. In: Artificial intelligence
8.1 (1977), pp. 99–118.

[31] Z. Michalewicz. Genetic algorithms+ data structures= evolution programs. springer,
1996.

61

BIBLIOGRAPHY

[32] J. Mockus. “Global Optimization and the Bayesian Approach”. In: Bayesian Ap-
proach to Global Optimization. Springer, 1989, pp. 1–3.

[33] U. Montanari. “Networks of constraints: Fundamental properties and applications
to picture processing”. In: Information sciences 7 (1974), pp. 95–132.

[34] R. E. Moore. Interval analysis. Vol. 2. Prentice-Hall Englewood Cliffs, 1966.

[35] J. J. Moré and D. C. Sorensen. “Computing a trust region step”. In: SIAM Journal on
Scientific and Statistical Computing 4.3 (1983), pp. 553–572.

[36] J. J. Moré and D. J. Thuente. “Line search algorithms with guaranteed sufficient de-
crease”. In: ACM Transactions on Mathematical Software (TOMS) 20.3 (1994), pp. 286–
307.

[37] P. M. Morse and H. Feshbach. “Asymptotic series; method of steepest descent”. In:
Methods of Theoretical Physics, Part I (1953), pp. 434–443.

[38] W. J. Older and A. Vellino. “Constraint Arithmetic on Real Intervals.” In: WCLP.
1991, pp. 175–195.

[39] M. J. Powell. " A method for non-linear constraints in minimization problems". UKAEA,
1967.

[40] J.-F. Puget and P. Van Hentenryck. “A constraint satisfaction approach to a circuit
design problem”. In: Journal of global optimization 13.1 (1998), pp. 75–93.

[41] D. Sam-Haroud and B. Faltings. “Consistency techniques for continuous constraints”.
In: Constraints 1.1-2 (1996), pp. 85–118.

[42] P. F. for Science and Technology. Project PROCURE: Probabilistic Constraints for Un-
certainty Reasoning in Science and Engineering Applications. July 2014. URL: http:
//centria.di.fct.unl.pt/projects/procure/index.html.

[43] P. Shaw. “Using constraint programming and local search methods to solve ve-
hicle routing problems”. In: Principles and Practice of Constraint ProgrammingCP98.
Springer, 1998, pp. 417–431.

[44] G. Sidebottom and W. S. Havens. “Hierarchical arc consistency for disjoint real
intervals in constraint logic programming”. In: Computational Intelligence 8.4 (1992),
pp. 601–623.

[45] T. Steihaug. “The conjugate gradient method and trust regions in large scale opti-
mization”. In: SIAM Journal on Numerical Analysis 20.3 (1983), pp. 626–637.

[46] P. Van Hentenryck, D. McAllester, and D. Kapur. “Solving polynomial systems us-
ing a branch and prune approach”. In: SIAM Journal on Numerical Analysis 34.2
(1997), pp. 797–827.

[47] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. Springer, 1987.

[48] R. J. Vanderbei. Nonlinear Optimization Models. July 2014. URL: http://orfe.
princeton.edu/~rvdb/ampl/nlmodels.

62

http://centria.di.fct.unl.pt/projects/procure/index.html
http://centria.di.fct.unl.pt/projects/procure/index.html
http://orfe.princeton.edu/~rvdb/ampl/nlmodels
http://orfe.princeton.edu/~rvdb/ampl/nlmodels

BIBLIOGRAPHY

[49] D. L. Waltz. Generating semantic description from drawings of scenes with shadows. 1972.

[50] S. Wright and J Nocedal. Numerical optimization. Vol. 2. Springer New York, 1999.

[51] S. J. Wright. “Continuous Optimization (Nonlinear and Linear Programming)”. In:
Foundations of Computer-Aided Process Design (1999).

63

	Introduction
	Continuous Optimization
	Local Search Optimization
	Unconstrained Local Search
	Constrained Local Search

	Global Search Optimization
	Deterministic methods
	Meta-heuristic methods

	Constraint Satisfaction over Continuous Domains
	Interval Representation and Analysis
	Constraint Propagation
	Consistency Techniques

	Hybrid Local Search Constraint Optimization Algorithms
	Procure, a quick introduction
	Random Local Search
	Armijo Rule with Quadratic Penalty Steepest Descent
	Box Ratio with Separate Penalty Steepest Descent

	Testing and Analysis
	First Optimization Problem: Dipigri
	Second Optimization Problem : HS108
	Benchmarks and Comments

	Conclusion and Future work

